<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

固態鋰金屬電池的外部壓力研究

清新電源 ? 來源:清華大學,悉尼科技大學 ? 2024-04-26 09:02 ? 次閱讀

文章信息

第一作者:胡霞,張志佳

通訊作者:周棟,李寶華,汪國秀,Doron Aurbach

單位:清華大學,悉尼科技大學,巴伊蘭大學

研究背景

目前,使用易燃液體電解質的商用鋰離子電池無法滿足日益增長的高能量密度和安全性要求。用無機固態電解質(SSE)取代傳統的液體電解質有望在很大程度上消除固態電池本質安全問題。同時,匹配鋰金屬負極和高容量的正極材料可以將能量密度提高到500 Wh kg?1 以上。但是由于SSE的剛性以及缺乏流動性的液態組分,不良的點對點接觸成為固態鋰金屬電池(SSLB)的限制因素。外部壓力可以使固體組分變形,改變SSLB的內部結構和界面,提高界面接觸性能,這對于實現穩定的循環是必不可少的。因此,深入了解外部壓力和電化學性能之間的耦合關系是開發高性能SSLB的關鍵。

在SSLB的制備和使用過程中,通常會承受兩種類型的外部壓力:制備壓力和堆疊壓力。制備壓力通常在電極和電解質制備過程中施加,包括原料粉末的制備,以及SSE和電極顆粒的壓制(圖1a)和電極的壓延(輥壓)。施加堆疊壓力以將電池組件連接在一起(圖1b)。施加外壓的方法和大小直接影響材料甚至整個電池的結構和性能。最佳制備壓力是SSE和/或電極的電導率達到最大值的壓力。施加在給定SSLB上的制備和堆疊壓力因SSE類型而異(圖1e,f)。低模量鹵化物SSE(一般為200?400 MPa)的制備壓力遠高于硫化物和氧化物SSE(一般小于200 MPa)。同時,基于易碎氧化物SSE的SSLB(通常小于10 MPa)的堆疊壓力遠低于基于硫化物和鹵化物SSE的SSLB(通常為10?400 MPa)。因此,外部壓力與電化學性能之間的關系是設計高性能SSLB的關鍵考慮因素。

776570da-0366-11ef-a297-92fbcf53809c.png

圖1 SSLB的外部壓力來源。SSLB制備壓力(圖1a)和堆疊壓力(圖1b)示意圖。單軸壓制(圖1c)和等靜壓(圖1d)示意圖。不同SSE內部的制備壓力(圖1 e)和堆疊壓力(圖1f)的統計分析。

文章簡介

近日,巴伊蘭大學Doron Aurbach教授、悉尼科技大學汪國秀教授、清華大學李寶華教授和周棟助理教授合作,在國際期刊Nature reviews materials上發表了題為“External-pressure–electrochemistry coupling in solid-state lithium metal batteries”的綜述文章。該文章基于廣泛研究的無機SSEs,即氧化物、硫化物和鹵化物SSEs,系統地概述了SSLB中外部壓力與電化學之間的耦合關系??偨Y了外部壓力對SSLB和電極以及組件之間界面的影響,并將它們與熱力學或動力學原理相關聯,進一步分析了電池在外部壓力下的整體電化學性能和安全性。最后,闡明了實現耐壓和低壓SSLB的主要挑戰,為固態電池未來的突破奠定了基礎。

文章要點

7782a51a-0366-11ef-a297-92fbcf53809c.png

圖2. 外壓產生的變形和對接觸性能的影響。a 粗糙表面接觸狀態示意圖。b 欠壓SSLB示意圖。c 壓力過大SSLB示意圖。d 不同SSEs的彈性模量、剪切模量和體積模量。在50 MPa(圖2e)和370 MPa(圖2f)的制備壓力下制備的SSE橫截面掃描電子顯微鏡圖像。g 不同類型SSE鋰離子電導率的制備壓力依賴性。h LiNi0.33Co0.33Mn0.33O2 (NCM)|Li3SP4|Li–In不同堆疊壓力下的循環過程中充放電曲線。i 不同正極材料的彈性模量、剪切模量和體積模量。

779e734e-0366-11ef-a297-92fbcf53809c.png

圖3. 外壓對鋰蠕變的影響。a 不同直徑鋰的工程應力-應變曲線。b 外壓力作用下鋰蠕變示意圖。c 不同堆疊壓力下Li|Li對稱電池界面阻抗。d Li|Li對稱電池在25 MPa壓力,不同保壓時間下的臨界電流密度。

77c20124-0366-11ef-a297-92fbcf53809c.png

圖4. 外壓對鋰金屬陽極沉積形貌及枝晶生長的影響。a 壓力和無壓力條件下剝離和電鍍過程中鋰陽極變化示意圖。b 堆疊壓力下鋰泡總能量平衡示意圖。c 0.05 mA cm-2電流密度下電鍍過程中鋰泡在不同堆疊壓力下的形態變化。d 鋰枝晶應力分析示意圖。e 無壓力狀態下的鋰枝晶穿透(上圖)和鋰枝晶在200 MPa壓縮載荷下的偏轉(與加載軸約90°對齊)(下圖)圖示。f 固態鋰金屬電池中死鋰的兩種形成模式示意圖:集流體上的死鋰和SSE內部的死鋰。

77d89ea2-0366-11ef-a297-92fbcf53809c.png

圖5外壓作用下的材料結構變化。a 固體材料?S > 0情況下的焓作為壓力的函數示意圖。b,c Li2MnSiO4材料不同壓力作用后晶胞結構(左圖)和離子擴散路徑(右圖)示意圖。d Li4Ti5O12材料在壓縮和減壓過程中阻抗變化。e Li[Li0.144Ni0.136Co0.136Mn0.544]O2循環后(左圖)和在壓力處理下再生(右圖)材料的結構變化。f Li7SiPS8離子電導率隨制備壓力變化曲線。g 鋰金屬在寬壓力-溫度范圍內的相圖.

77f70e1e-0366-11ef-a297-92fbcf53809c.png

圖6外壓對電極-電解質界面反應的影響。a SSE在沒有(左)和有(右)外部壓力影響的情況下的熱力學分解示意圖。b 不同Keff的分解反應途徑和不同電壓范圍內不同相位平衡導致的產物。c 不同硫化物SSEs的電壓窗口和離子電導率與氯含量的關系。

總結與展望

SSLB在過去幾年中取得了長足的進步。事實上,實現高性能SSLB取決于外部壓力的合理優化。外部壓力不足可能導致SSLB內部出現嚴重的接觸問題,阻塞離子和電子轉移并加速鋰枝晶生長。相比之下,最優的制備壓力可以有效降低SSE的孔隙率,避免枝晶誘導的短路故障,顯著提高離子電導率。最佳的堆疊壓力有助于界面處的離子和/或電子轉移,同時防止枝晶生長到SSE的表面孔隙和空隙中。同時,可以阻斷界面副反應并擴大電化學窗口,可以在SSLB中實現更高的能量密度。然而,施加的壓力超過一定閾值(取決于正極活性材料、SSE和鋰金屬的模量等)會在正極活性材料和SSE顆粒中產生裂紋,從而減小有效接觸面積并惡化電池動力學性能。更嚴重的是,這種過大的壓力加劇了鋰蠕變和通過SSE的枝晶生長,引發了嚴重的安全問題。

從工程角度來看,理想情況下,目標堆疊壓力值應為<0.1 MPa(技術上也可以接受幾MPa),以滿足工業規模的生產要求。然而目前大多數SSLB研究中的堆疊壓力(>10 MPa)遠高于此。同時,考慮到不均勻的外壓產生的彎曲應力,施加的外壓的均勻性對SSLB的性能起著關鍵作用。因此,高精度壓力控制和監測設備在實際應用中具有很高的價值。此外,此時,為滿足不斷增長的能量密度要求,超薄SSE(<30μm)和鋰金屬陽極(厚度為幾微米,甚至不含鋰金屬)是工業應用的重中之重。這種薄度對SSLB壓力篩選和成分設計提出了挑戰。

盡管從科學的角度來看,SSLBs中外部壓力和電化學之間的耦合已經取得了很大進展,但尚未建立令人信服的機制和模型。大多數關于外部壓力的相關研究僅限于某些SSE系統,缺乏普遍性,并且仍然缺乏對壓力對質量擴散動力學、界面反應路徑和動力學以及內應力的影響的理解。事實上,已經在以下領域投入了大量努力。

應通過多尺度表征和建模(如時間尺度、空間尺度和動力學因子)對壓力對電化學過程的影響進行定性和定量分析,以闡明循環時SSLB組分的結構和性能變化,并預測某些應用場景的最佳壓力。人工智能機器學習方法可能有助于有效解決SSLB的質量參數和數據挑戰。高通量篩選可以大大加速耐壓和低壓電極和SSE材料的發展。同時,開發高空間分辨或無損表征技術以及原位技術將是監測SSLB在整個生命周期內在外部壓力下的結構演變的關鍵。

應根據其特性,為每種類型的SSLB組件合理建立施加外部壓力的標準。就SSE而言,硫化物和鹵化物的離子電導率比脆性和硬變形氧化物SSE對外部壓力更敏感。此外,鑒于硫化物和鹵化物SSEs的電化學穩定性較氧化物SSEs差,施加適當的堆疊壓力將是擴大其電壓窗口以滿足電池應用要求的有效方法。然而,硫化物和鹵化物SSE的硬度和楊氏模量相對較低,使其在外壓下容易被鋰枝晶刺穿,這設定了堆疊壓力的上限。至于電極,它們在SSLB中的設計必須具有抗壓性,以適應極端環境應用(例如深海和深海場景)。機械強度高的陰極材料,通過摻雜、涂層或結構設計等處理得到加強,以及通過合金強化的硬化鋰金屬陽極、晶界強化或表面處理,是應對這一艱巨挑戰的有希望的選擇。

為了最大限度地降低堆疊壓力以滿足工業生產要求,零應變或低應變強度的陰極材料,優選具有量身定制的結構,以緩沖充放過程中由體積變化引起的應變。此外,復合陰極中的粒徑和SSE、粘結劑、導體和陰極活性材料的比例應控制好,以保證足夠的離子和電子電導率。對于低堆疊壓力應用,通過在SSE上涂覆高鋰親和層等策略,提高鋰和SSE之間的親和力和接觸尤為重要或引入彈性聚合物電解質中間膜??傮w而言,無論施加壓力的大小如何,提高SSE的機械強度、內部密度和純度以及表面完整性對于防止鋰枝晶的形成和滲透至關重要,因為在高鋰沉積速率下,界面應力可以迅速累積到千兆帕水平。此外,借鑒粉末冶金技術,在SSLB的制備過程中和SSLB的堆疊上,可以應用熱壓和等靜壓等先進的加壓方法,以降低處理成本并提高電池組件的均勻性。

外部壓力與電化學的耦合可用于設計一系列耐壓和低壓SSLB,適用于各種操作條件下的廣泛應用。通過綜合考慮化學、電化學、幾何、材料力學和界面行為,在不久的將來,這一有吸引力的領域有望取得更多進展。

7810fcac-0366-11ef-a297-92fbcf53809c.png

圖7 外部壓力對SSE和SSLB性能的影響。a 氧化物,硫化物和鹵化物SSEs不同制備壓力下的離子電導率。b 基于氧化物,硫化物和鹵化物SSEs的Li|Li對稱電池在不同制備壓力下的循環性能。c–e 評估外部壓力對氧化物(圖7c)、硫化物(圖7d)和鹵化物(圖7e)SSE的固有性能和電池性能的影響。對于氧化物、硫化物和鹵化物 SSE,最佳壓力范圍可分別評估為 1?400 MPa、100?400 MPa 和 100?300 MPa。

文獻鏈接:

Hu, X., Zhang, Z., Zhang, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. (2024).

https://doi.org/10.1038/s41578-024-00669-y



審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 鋰離子電池
    +關注

    關注

    85

    文章

    3086

    瀏覽量

    76492
  • 電解質
    +關注

    關注

    6

    文章

    745

    瀏覽量

    19679
  • 固態電池
    +關注

    關注

    8

    文章

    615

    瀏覽量

    26704

原文標題:Doron Aurbach、汪國秀、李寶華、周棟Nature reviews materials: 固態鋰金屬電池的外部壓力

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    固態電池的發展仍面臨諸多挑戰

    固態電池因為內部固態電解質無法流動,因此可以實現內串聯,大大減少了電池外部串聯的零部件,提高系統能量密度。
    發表于 04-16 11:11 ?112次閱讀
    全<b class='flag-5'>固態</b><b class='flag-5'>電池</b>的發展仍面臨諸多挑戰

    太藍新能源在固態金屬電池領域取得技術突破

     在此推動下,太藍新能源成功研制出全球首個具備車載等級,單體容量達120Ah,實際能量密度高達720Wh/kg的超級全固態金屬電池,刷新了體型化鋰電池的單體容量和最高能量密度記錄。
    的頭像 發表于 04-15 14:45 ?323次閱讀

    太藍新能源宣布已成功研發出世界首塊車規級全固態金屬電池

    固態電解質和負極材料是全固態電池最為核心的研究方向。
    的頭像 發表于 04-08 09:20 ?769次閱讀

    固態金屬電池負極界面設計

    固態金屬電池有望應用于電動汽車上。相比于傳統液態電解液,固態電解質不易燃,高機械強度等優點。
    的頭像 發表于 01-16 10:14 ?312次閱讀
    全<b class='flag-5'>固態</b>鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>負極界面設計

    金屬電池重大突破:10分鐘完成充電

    金屬電池
    深圳市浮思特科技有限公司
    發布于 :2024年01月10日 15:29:27

    金屬電池重大突破:10分鐘完成充電,可循環至少6000次

    金屬電池
    北京中科同志科技股份有限公司
    發布于 :2024年01月10日 09:19:17

    通過金屬負極/LPSCl界面調控實現超穩定全固態金屬電池

    為解決傳統鋰離子電池能量密度不足、安全性低等問題,部分研究者將目光投向全固態金屬電池。
    的頭像 發表于 01-09 09:19 ?477次閱讀
    通過<b class='flag-5'>金屬</b>負極/LPSCl界面調控實現超穩定全<b class='flag-5'>固態</b>鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    固態電池和半固態電池的優缺點

    固態電池和半固態電池是新一代高性能電池技術,具有許多傳統液態電池所沒有的優勢。
    的頭像 發表于 12-25 15:20 ?5971次閱讀

    固態金屬電池內部固化技術綜述

    高能量密度鋰金屬電池是下一代電池系統的首選,用聚合物固態電解質取代易燃液態電解質是實現高安全性和高比能量設備目標的一個重要步驟。
    的頭像 發表于 12-24 09:19 ?1751次閱讀
    <b class='flag-5'>固態</b>鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>內部固化技術綜述

    重識全面電動化語境下的固態電池

    固態電池≠高鎳三元+硅基/鋰金屬負極+固態電解質
    的頭像 發表于 12-09 14:52 ?619次閱讀

    可用于高面積容量、長循環全固態金屬電池的的Li9N2Cl3

    在所有固態金屬電池中,要獲得可觀的面積容量(>3 mAh/cm2)和延長循環壽命,就需要實現能夠承受臨界電流密度和容量升高的固態電解質(SSEs)。
    的頭像 發表于 11-09 11:13 ?403次閱讀
    可用于高面積容量、長循環全<b class='flag-5'>固態</b>鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的的Li9N2Cl3

    寬溫域鈉金屬電池研究進展

    金屬具有~1166 mA h g?1高的理論比容量和?2.71 V的低氧化還原電位,在鈉金屬電池領域有著廣闊的應用前景。
    的頭像 發表于 10-12 18:04 ?1208次閱讀
    寬溫域鈉<b class='flag-5'>金屬</b><b class='flag-5'>電池</b><b class='flag-5'>研究</b>進展

    固態電池原位聚合方法的研究進展

    液態電解質的泄漏和易燃易爆等安全問題影響著鋰電池的應用場景。引入固態電解質如聚合物電解質可以改善此類問題,促進鋰金屬電池的實際應用。
    發表于 09-19 11:35 ?1457次閱讀
    <b class='flag-5'>固態</b>鋰<b class='flag-5'>電池</b>原位聚合方法的<b class='flag-5'>研究</b>進展

    用于鈉金屬電池的NASICON固態電解質的超快合成

    NASICON結構固態電解質(SSEs)作為一種非常有前途的鈉固態金屬電池(NaSMB)材料,由于其在潮濕環境中具有優異的穩定性、高離子導電性和安全性,因此受到了廣泛關注。
    發表于 08-23 09:43 ?1164次閱讀
    用于鈉<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的NASICON<b class='flag-5'>固態</b>電解質的超快合成

    固態電池研究:半固態已來,全固態還遠嗎?

    基于此,越來越多企業加碼研發并生產固態電池。動力電池企業中,寧德時代、國軒高科、贛鋒鋰業、億緯鋰能、欣旺達等均在積極推進固態電池技術布局。不
    的頭像 發表于 05-25 16:14 ?2513次閱讀
    <b class='flag-5'>固態</b><b class='flag-5'>電池</b><b class='flag-5'>研究</b>:半<b class='flag-5'>固態</b>已來,全<b class='flag-5'>固態</b>還遠嗎?
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>