<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

鎖相放大器OE1022應用在金剛石中氮空位(NV)的量子溫度傳感器研究

jf_64961214 ? 來源:jf_64961214 ? 作者:jf_64961214 ? 2024-04-26 06:33 ? 次閱讀

wKgZomYq2jiAJNTWAAIU-lat_Zs459.jpg

圖1. (a)混合光纖溫度計裝置示意圖 (b) 傳感器的簡化示意圖。 (c)基于光纖量子溫度計進行溫度成像的芯片。

2021 年,中國科學技術大學&中國科學院量子信息重點實驗室郭光燦院士團隊在Review of scientific instruments 發表了一篇題為《A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers》文章,報道了基于金剛石中氮空位(NV)中心的量子溫度傳感器。

文章提出利用金剛石中的氮空位中心對不同物理量的敏感特性,設計一種光纖量子溫度計,它能有效地隔離磁場噪聲和微波功率漂移。采用頻率調制的方法,通過檢測高密度氮空位系綜中光測核磁共振譜的銳傾角變化,實現了溫度的測量。由于其實現的簡單和兼容性以及隔離磁和微波噪聲的魯棒性,該量子溫度計隨后被應用于靈敏度為18 mK/Hz的電子芯片的表面溫度成像。為在模糊環境下實現高靈敏度溫度測量奠定了基礎。

樣品 & 測試

如圖 1(a) 所示。 NV中心整體由 [N]≈55 ppm和[NV-] ≈ 0.15 ppm 組成,金剛石通過等離子體輔助化學氣相沉積生長的 [100] 表面取向。如圖1(b)所示,將附著在纖芯直徑為100 μm的多模光纖前列的金剛石進行機械拋光并切割成尺寸為200×200×100 μm^3的薄膜。實驗中,通過波長532nm的激光通過聲光調制器(AOM, AA optoelectronic MT250-A0.5-VIS)耦合到多模光纖中。其中部分激光被分離并在光電二極管 (PD, Thorlabs PDA36A) 上進行測量。然后將信號輸入到比例積分微分控制器(PID,SRS SIM960)以穩定激光功率。

由同一根光纖收集的光致發光 (PL) 通過 647 nm 長通濾光片,最終被發送到光電探測器 (Thorlabs APD130A2/M)。使用鎖相放大器(LIA,Sine Scientific Instruments OE1022)通過 MW 的幅度調制 (AM) 或頻率調制 (FM) 對檢測到的信號進行噪聲過濾和放大。 MW 發生器(Rohde & Schwarz SMB 100A)的輸出射頻信號被發送到 LIA 作為參考。此外,輸出MW通過開關(M-C ZASWA-2-50DR+)送到大功率放大器(M-C ZHL-16W-43),最后通過外徑為0.5的五匝銅環輸出毫米纏繞在光纖陶瓷塞芯上。

wKgaomYq2jiAbLbIAACek_ns80E066.png

wKgZomYq2jqAHqC-AADKjq0e26I991.png

圖2(a) 紅色熒光量和 ZFS 位置偏移 (ΔD) 作為綠色激光功率的函數。 遠離飽和,熒光隨著激光功率線性增加(藍線)。 由于激光加熱效應,ZFS 參數線性下降(黑線)。 (b) 在不施加偏置磁場的情況下,通過 FM 和 AM 用單個 MW 源記錄的 CW-ODMR 光譜。 (i) AM 光譜呈現出銳傾結構,無法通過雙洛倫茲(綠色)或高斯(粉紅色)輪廓再現。(ii) FM 頻譜表現出 f0;f±1 的三個典型頻率,對應于 FM 鎖定信號過零,從而提供大的溫度響應。

wKgaomYq2jqAd9LLAAMMPQt-G98279.png

通過用333 Hz(鎖相放大器時間常數 τ = 30 ms)方波調制處理 AOM,研究NV 中心的紅色熒光量與激光功率的函數,如圖2(a)中實心藍點所示,并進行線性擬合。在不飽和的情況下,熒光隨激光功率線性增加。通常,由于單個 NV 中心的吸收截面和固有的功率展寬可以忽略不計,隨著整體體積和密度的增加,達到飽和狀態變得更加困難。相反,從 ODMR 光譜中提取的 ZFS 隨著激光功率的增加而降低,如圖 2(a)中的實心黑點所示。然而,對于光纖溫度計來說,高功率泵浦激光器加熱效應會顯著影響溫度的檢測精度。因此,必須將激光功率設置在10 mW以下。在這種情況下,可以將金剛石的溫度保持在室溫,并將局部溫度變化傳遞到金剛石上,利用NV中心進行檢測。

wKgZomYq2juAAiIlAANxPJbEg8U428.png

圖3 (a) 和 (b) 樣本 A 的 FM ODMR 頻譜的較大斜率作為 MW 功率和調制偏差的函數,中心頻率分別固定在 f0 和 f+1。 (c) 和 (d) 方程的模擬結果。(e)(a)和(c)中粉紅色虛線的橫截面。陰影區域中小于10%的靈敏度變化表明MW功率漂移的動態范圍。 (f) 模擬 ODMR 光譜的較大斜率, f0 作為矢量地磁場的函數。 在這里,提取的較大斜率被歸一化,模擬參數與(c)和(d)相同。

wKgaomYq2juAdtZlAAJbNFRE1Nw712.png

圖4中心頻率為 f0 的 FM 方案隔離磁場噪聲和 MW 功率漂移 (a) 簡化的實驗裝置示意圖。 (b)亥姆霍茲線圈以 1 Hz 振蕩的 5.2 μT 偏置磁場鎖定的信號。 當中心頻率固定在 f0 時,我們的技術對磁噪聲不太敏感。(c) 鎖定信號與傳感器到鋁筒距離的變化。 (d)加熱、等待、冷卻三個過程溫度變化LIA測到的信號。 在17分鐘(插圖)出現了一個跳躍,主要是由于在加熱時,靜電磁場消失。

wKgZomYq2juAd15bAADv-9mhqh4696.png

wKgaomYq2jyAbbAGAACT6X-MdbM232.png

圖5(a)相同幅度的MW時三個樣品的ODMR光譜。 (b) 按調制偏差 fd 和形狀分類,有 sine-inside、sine-outside、square-inside 和 square-outside 傳感協議。

wKgZomYq2jyANXL3AAZrBb1kNG8449.png

圖6(a) 和 (b) 樣品 B 的鎖定 ODMR 譜的較大斜率作為 MW 功率和 FM 偏差的函數。 采用正弦(a)和方波(b)調制形狀的FM MWs。 (c) 鎖定輸出作為溫度變化的函數,具有理想溫度靈敏度,在圖中標記為“sine-inside,” “sine-outside,” “square-inside,” and “square-outside” (a) 和 (b)。 (d) 和 (i) 與 (a)-(c) 類似的測量結果,但鉆石樣品(C 和 D)除外。

wKgZomYq2j2AcrWrAAKeLSDDz-I804.png

圖7中心頻率固定為 f0 的電子芯片(虛線框)的溫度掃描。 (a) 和 (b) 分別記錄芯片斷電和通電時中心頻率固定為 f0 的鎖定信號。(a)(b)和(c)中粉紅色虛線的橫截面。

總結

研究了位于 ODMR 光譜共振之間的中心的急劇下降,并證實了它對溫度敏感性的增強,并提出了一種堅固的基于光纖的溫度計以及 NV 中心。應用中心頻率在急劇下降的 FM MW 允許靈敏度為18mK/√Hz在室溫下。這種方法可以通過單次鎖定測量來保護溫度測量免受環境磁場和MW功率漂移的影響。借助基于光纖的溫度計,我們成功地對電子芯片的表面溫度分布進行了成像。由于其簡單性和魯棒性,這種量子溫度計為在模糊環境中高精度集成芯片和生物內窺鏡的微尺度熱檢測的實際應用鋪平了重要的一步。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 激光器
    +關注

    關注

    17

    文章

    2322

    瀏覽量

    59329
  • 鎖相放大器
    +關注

    關注

    5

    文章

    83

    瀏覽量

    16736
收藏 人收藏

    評論

    相關推薦

    鎖相放大器OE1022應用在電容耦合電導檢測器的研究

    Capacitively Coupled Conductivity Detector》文章,報道了一種改進的雙輸入直接接觸單輸出電容耦合電導檢測器(DISODCD)。該傳感器使用接觸電極的雙輸入、非接觸電極的電容耦合輸出和鎖相放大器
    的頭像 發表于 04-24 06:38 ?104次閱讀
    <b class='flag-5'>鎖相</b><b class='flag-5'>放大器</b><b class='flag-5'>OE1022</b><b class='flag-5'>應用在</b>電容耦合電導檢測器的<b class='flag-5'>研究</b>

    鎖相放大器OE1022應用在二維鐵磁自旋相關性的測量

    2023年,重慶大學物理學院柴一晟團隊、重慶大學量子材料與器件研究中心孫陽團隊在Physical Review上發表了一篇題為”Observation of enhanced
    的頭像 發表于 04-15 06:33 ?143次閱讀
    <b class='flag-5'>鎖相</b><b class='flag-5'>放大器</b><b class='flag-5'>OE1022</b><b class='flag-5'>應用在</b>二維鐵磁自旋相關性的測量

    OE1022鎖相放大器在單相多鐵氧體的材料應用

    流,用于產生交變磁場(Hac = 3 Oe,f = 1-2000 Hz)。交流和直流磁場均平行于多鐵素體試樣表面。使用鎖相放大器 (OE1022) 記錄感應 ME 電壓。 2023年,
    的頭像 發表于 03-29 06:35 ?149次閱讀
    <b class='flag-5'>OE1022</b><b class='flag-5'>鎖相</b><b class='flag-5'>放大器</b>在單相多鐵氧體的材料應用

    金剛石晶體的不同類型及應用梳理

    金剛石是我們都非常熟悉的超硬材料,人造金剛石晶體有多種不同的類型,大致可分為單形和聚形,每種類型都具有不同的特性和應用。本文梳理了金剛石晶體的不同類型及應用。
    的頭像 發表于 01-02 15:47 ?1156次閱讀

    金剛石表面改性技術研究概況

    金剛石具有極高的硬度、良好的耐磨性和光電熱等特性,廣泛應用于磨料磨具、光學器件、新能源汽車和電子封裝等領域,但金剛石表面惰性強,納米金剛石分散穩定性差,與很多物質結合困難,制約了其應用與推廣。
    的頭像 發表于 12-21 15:36 ?460次閱讀

    全球首個100毫米的單晶金剛石晶圓研發成功

    運用異質外延工藝,Diamond Foundry以可擴展的基底制造單晶金剛石,這是一項前所未有的技術突破。過去已有技術用于生產金剛石晶片,但這些晶片基于壓縮金剛石粉末制備,缺乏單晶金剛石
    的頭像 發表于 11-10 16:04 ?1075次閱讀

    全球首個100mm的金剛石晶圓

    該公司使用一種稱為異質外延的工藝來沉積碳原子,并在可擴展的基底上制造單晶金剛石。以前已經生產過金剛石晶片,但它是基于壓縮金剛石粉末,缺乏單晶金剛石的特性。
    的頭像 發表于 11-08 16:07 ?576次閱讀

    金剛石制造半導體器件,難在哪?

    電子發燒友網報道(文/梁浩斌)金剛石是自然界中天然存在的最堅硬的物質,與此同時,實際上金剛石還是一種絕佳的半導體材料。作為超寬禁帶半導體材料,金剛石具備擊穿場強高、耐高溫、抗輻照等性能,在輻射探測
    的頭像 發表于 10-07 07:56 ?2112次閱讀
    用<b class='flag-5'>金剛石</b>制造半導體器件,難在哪?

    金剛石用作封裝材料

    ×10-6/℃。它不僅在半導體、光學方面表現搶眼,還有很多其他優秀的特性。雖然金剛石本身并不適合用來制作封裝材料,而且成本也較高,但它的熱導率可是比其他陶瓷基板材料高出幾十甚至上百倍!這也讓很多大公司都爭先恐后地投入研究。
    的頭像 發表于 09-22 17:00 ?431次閱讀

    金剛石基光電探測及激光器應用研究

    金剛石具有優良的光學性能,高質量 CVD 金剛石薄膜具有十分優良的光學性能,除 3~6 μm 范圍內的雙聲子區域存在晶格振動而產生的本征吸收峰外,在室溫下,從紫外至遠紅外甚至微波段,都有很高的透過性,理論透過率高達71.6%。
    發表于 08-03 10:51 ?412次閱讀
    <b class='flag-5'>金剛石</b>基光電探測及激光器應用<b class='flag-5'>研究</b>

    新型金剛石半導體

    基于業界長期的研發活動,如今金剛石半導體已經開始逐步邁向實用化。但要真正普及推廣金剛石半導體的應用,依然需要花費很長的時間,不過已經有報道指出,最快在數年內,將會出現金剛石材質的半導體試用樣品。業界對
    的頭像 發表于 07-31 14:34 ?984次閱讀

    異質外延單晶金剛石及其相關電子器件的研究進展

    金剛石異質外延已發展 30 年有余,而基于 Ir 襯底的大面積、高質量的異質外延單晶金剛石已取得較大進展。本文主要從關于異質外延單晶金剛石及其電子器件兩個方面對異質外延單晶金剛石的發展
    的頭像 發表于 07-12 15:22 ?1210次閱讀
    異質外延單晶<b class='flag-5'>金剛石</b>及其相關電子器件的<b class='flag-5'>研究</b>進展

    基于金剛石優異內在特性的光子學應用

    ? 人造鉆石生產的進步,使新的光子學技術成為了可能,但這些新技術在服務量子應用方面仍然存在許多挑戰。 過去十余年中,受到一系列關鍵技術趨勢和市場需求的推動,許多利用金剛石特殊物理特性的商用、新興光子
    的頭像 發表于 06-28 11:03 ?463次閱讀

    制造等離子納米金剛石

    近日,Nano Letters(《納米快報》)在線發表武漢大學高等研究院梁樂課題組和約翰霍普金斯大學Ishan Barman課題組關于高效構建等離子增強NV色心的納米器件研究進展,他們利用自下向上的DNA自組裝方法開發了一種混合
    的頭像 發表于 06-26 17:04 ?480次閱讀
    制造等離子納米<b class='flag-5'>金剛石</b>
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>