<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

Chiplet和異構集成時代芯片測試的挑戰與機遇

芯長征科技 ? 來源:全球電子市場 ? 2023-07-12 15:04 ? 次閱讀

摩爾定律描述了集成電路晶體管數量大約每兩年翻一番的經驗規律,它對計算技術進步來說至關重要,比如處理速度或計算機價格。早在1965年,戈登·摩爾(Gordon Moore)就曾指出:“用單獨封裝和互連的較小功能構建大型系統可能會更經濟?!?/p>

幾十年來,晶圓廠成功實現了數字能力和晶體管密度的指數級增長。今天,芯粒(又稱Chiplet)等新的工藝技術與先進封裝方案不僅沒有違反摩爾定律,反而還在為延續摩爾定律,繼續實現數字縮放進步而賦能。

雖然Chiplet近年來越來越流行,將推動晶體管規模和封裝密度的持續增長,但從設計、制造、封裝到測試,Chiplet和異構集成也面臨著多重挑戰。因此,進一步通過減少缺陷逃逸率,降低報廢成本,優化測試成本通過設計-制造-測試閉環實現良率目標已成為當務之急。

總體質量成本優化策略至關重要

當我們處理更復雜的測試流程時,比如KGD(Known Good Die)測試、最終測試和系統級測試,優化總體質量成本的策略仍然至關重要。策略背后的關鍵點包括以下幾個方面:

在設計過程的初期,新產品導入或大批量生產之前,設計人員和測試工程師需要進行充分協作,利用通用工具進行芯片驗證和故障調試;

將某些測試流程轉移到整個流程的早期,以減少KGD集成之前的早期缺陷;

將一些測試推遲到制造過程的后期,以降低測試成本,進一步優化成本;

隨著制造過程的成熟和穩定,對這些過程進行大數據分析,以便調整制造過程中的測試流程,從而優化總體質量成本。

缺陷逃逸導致報廢成本呈幾何級數增長

與傳統單片器件相比,Chiplet的設計和制造流程明顯不同,與制造傳統單片半導體器件相關聯的報廢成本實際上是線性的,包括單芯片成本、封裝和組裝成本。Chiplet或3D先進封裝的制造流程在廢料成本的積累方面有很大不同。具體講,從制造到組裝,報廢成本呈幾何級數增加,因為其中包括了多個管芯、多芯片部分組件或全3D封裝的報廢成本。

雖然3D封裝是摩爾定律繼續向前的的推動者,不過這種方法的經濟可行性在于,需要能夠在制造流程的早期減少缺陷逃逸率,從而降低報廢成本。

f0e35156-2055-11ee-962d-dac502259ad0.png

“左移”還是“右移”?

“左移”是一種在制造流程早期降低缺陷逃逸率降低報廢成本,從而3D組件的總體制造成本降至最低的策略?!白笠啤笔窃谥圃爝^程的早期增加測試覆蓋率,以降低缺陷逃逸率并改進潛在檢測的能力。

減少缺陷逃逸的方法之一是啟用“Known Good”。為減少缺陷逃逸生產“Known Good”的器件,需要在包括晶圓檢測和部分封裝的階段,即制造流程的早期,提高測試覆蓋范圍,同樣,還可以在流程中增加額外的測試,以識別新的故障類型或故障模式,例如通過邊界掃描的測試覆蓋發現與部分組件相關的互連問題。

f1038d5e-2055-11ee-962d-dac502259ad0.png

當然,作為實現“Known Good”的手段,“左移”也需要進行權衡。例如,在制造流程的早期增加測試強度,可以大大降低缺陷逃逸率。然而,“左移”在逐漸接近可接受的缺陷逃逸率時,會導致測試成本持續增加,而缺陷逃逸率降低的帶來的報廢成本的減少則會遞減。

f11d3df8-2055-11ee-962d-dac502259ad0.png

“右移”是增加制造流程后期的測試覆蓋率,擴大檢測缺陷的能力,在降低成本同時確保質量水平的可行手段。

通常,晶圓測試良率較高的測試項、任務模式測試或需要較長測試時間掃描測試的高良率測試是“右移”的理想候選者。這些測試可以轉移到最終測試或系統級測試階段,或者在兩者之間靈活管理,在實現質量目標的前提下進一步降低成本。

f12f25b8-2055-11ee-962d-dac502259ad0.png

不管是“左移”還是“右移”,都是為了在整個制造流程中、質量和良率的最佳組合,最終優化整體質量成本。具體的策略包括:通過降低晶圓檢測過程中的缺陷逃逸率,最大限度地降低報廢成本;以最高效的方式實現量產測試,從而降低芯片的測試成本;通過大數據推動整個制造工藝的閉環和改進,從而提高良率。

f13d71ea-2055-11ee-962d-dac502259ad0.png

那么在生產中,要選擇將測試“左移”還是“右移”呢?

兩者兼而有之是問題的答案。為了管理整體質量成本,有必要“左移”和“右移”。左移提供了一種在制造流程早期降低缺陷逃逸率的方法,而右移則可以實現在可控測試成本的同時達到需要的產品質量水平。

“左移”增加了晶圓檢測的覆蓋率,通過高故障率的結構、參數、掃描及壓力測試,為工藝改進和優化提供有價值的信息;“右移”為檢測“難以找到”或需要長時間掃描的測試或壓力測試提供了一種經濟的手段。

在面對“左移”還是“右移”的選擇中,優化測試策略是一個動態和持續的過程。大數據為測試策略的決策提供了依據。泰瑞達靈活測試方案和工具組合,可以在整個芯片制造流程中靈活調整測試策略,持續優化制造成本和保障質量。

彌合從設計到測試的差距

Chiplet是先進封裝中的組成單元,而3D是先進封裝的工藝手段。利用靈活測試可以優化3D制造流程的質量成本。靈活測試可以移動測試覆蓋范圍,包括晶圓檢測、部件裝配、最終測試、系統級測試,最大限度地降低實現質量的成本。

f15ae630-2055-11ee-962d-dac502259ad0.png

事實上,在制造流程的早期,最大限度地降低缺陷逃逸并不是一個靜態問題。學習、工藝改進和新技術都為實現整個制造流程中測試覆蓋率的平衡提供了機會。因此,在制造流程中靈活地“左移”或“右移”測試覆蓋范圍的能力很重要。這種靈活性將有助于應對制造過程不斷發展的成熟度,并對質量成本的持續優化做出響應。

事實上,減少缺陷逃逸并非事情的全部,還需要考慮良率如何。

為了實現這一點,就要彌合從設計到測試的差距,提升工程效率,以改變器件的調試(debug)和良率學習(yield learning)方式。新的工作流程需要設計,制造和測試工程團隊無縫合作的方式,以加快器件的開發并產生學習效果。不僅需要在SLT和ATE測試系統上啟用EDA和JTAG工具,還需要通過一組通用的庫和調試工具,讓設計和DFT工程師可以無縫合作,同時共享關鍵見解,從而加速芯片開發并縮短學習時間。

f16a14de-2055-11ee-962d-dac502259ad0.png

值得一提的是,通用的工具集可以彌合設計和測試之間的差距,它可以在制造流程的任何階段部署,以識別、實施和驗證提高良率的機會。例如,該工具集可以在系統級測試中調試故障,在最終測試插入中對故障進行更深入的驗證,在晶圓檢測中增強的測試覆蓋率,以減少缺陷逃逸,并揭示生產流程中的“秘密”,以改進器件或工藝,完全消除缺陷并提高良率。

f181cdcc-2055-11ee-962d-dac502259ad0.png

設計和測試攜手創造未來

快速識別是在制造過程早期經濟地降低缺陷逃逸率的關鍵。靈活的測試流程,加上設計和測試工程領域能力的整合,將有助于快速識別、調試和消除故障,同時實現最佳的質量成本。

與3D Fabric Alliance中的EDA、設計、代工、測試和組裝合作伙伴合作,對于充分實現靈活的測試流程,并收集滿足3D封裝設計的質量目標成本所必需的關鍵學習工具至關重要。

來自EDA公司、DFT、運營、晶圓代工廠、OSAT、ATE-SLT供應商團隊之間的合作將是成功的關鍵。讓我們一起努力創造未來,快速實現良率目標。

f19e5956-2055-11ee-962d-dac502259ad0.png

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    447

    文章

    48108

    瀏覽量

    410644
  • 封裝
    +關注

    關注

    124

    文章

    7351

    瀏覽量

    141238
  • chiplet
    +關注

    關注

    6

    文章

    383

    瀏覽量

    12448

原文標題:Chiplet和異構集成時代芯片測試的挑戰與機遇

文章出處:【微信號:芯長征科技,微信公眾號:芯長征科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Chiplet技術對英特爾和臺積電有哪些影響呢?

    Chiplet,又稱芯片堆疊,是一種模塊化的半導體設計和制造方法。由于集成電路(IC)設計的復雜性不斷增加、摩爾定律的挑戰以及多樣化的應用需求,Ch
    的頭像 發表于 01-23 10:49 ?454次閱讀
    <b class='flag-5'>Chiplet</b>技術對英特爾和臺積電有哪些影響呢?

    芯礪智能Chiplet Die-to-Die互連IP芯片成功回片

    芯礪智能近日宣布,其全自研的Chiplet Die-to-Die互連IP(CL-Link)芯片一次性流片成功并順利點亮。這一重大突破標志著芯礪智能在異構集成
    的頭像 發表于 01-18 16:03 ?563次閱讀

    華芯邦科技開創異構集成新紀元,Chiplet異構集成技術衍生HIM異構集成模塊賦能孔科微電子新賽道

    華芯邦科技將chiplet技術應用于HIM異構集成模塊中伴隨著集成電路和微電子技術不斷升級,行業也進入了新的發展周期。HIM異構
    的頭像 發表于 01-18 15:20 ?292次閱讀

    異構專用AI芯片的黃金時代

    異構專用AI芯片的黃金時代
    的頭像 發表于 12-04 16:42 ?324次閱讀
    <b class='flag-5'>異構</b>專用AI<b class='flag-5'>芯片</b>的黃金<b class='flag-5'>時代</b>

    異構集成 (HI) 與系統級芯片 (SoC) 有何區別?

    異構集成 (HI) 與系統級芯片 (SoC) 有何區別?
    的頭像 發表于 11-29 15:39 ?641次閱讀
    <b class='flag-5'>異構</b><b class='flag-5'>集成</b> (HI) 與系統級<b class='flag-5'>芯片</b> (SoC) 有何區別?

    異構集成時代半導體封裝技術的價值

    異構集成時代半導體封裝技術的價值
    的頭像 發表于 11-28 16:14 ?279次閱讀
    <b class='flag-5'>異構</b><b class='flag-5'>集成</b><b class='flag-5'>時代</b>半導體封裝技術的價值

    3D異構集成與 COTS (商用現成品)小芯片的發展問題

    3D 異構集成與 COTS (商用現成品)小芯片的發展問題
    的頭像 發表于 11-27 16:37 ?306次閱讀
    3D<b class='flag-5'>異構</b><b class='flag-5'>集成</b>與 COTS (商用現成品)小<b class='flag-5'>芯片</b>的發展問題

    芯片變身 3D系統,3D異構集成面臨哪些挑戰

    芯片變身 3D 系統,3D 異構集成面臨哪些挑戰
    的頭像 發表于 11-24 17:51 ?346次閱讀
    當<b class='flag-5'>芯片</b>變身 3D系統,3D<b class='flag-5'>異構</b><b class='flag-5'>集成</b>面臨哪些<b class='flag-5'>挑戰</b>

    Chiplet,怎么連?

    高昂的研發費用和生產成本,與芯片的性能提升無法持續等比例延續。為解決這一問題,“后摩爾時代”下的芯片異構集成技術——
    的頭像 發表于 09-20 15:39 ?450次閱讀
    <b class='flag-5'>Chiplet</b>,怎么連?

    AMD、Intel與Qualcomm如何思考chiplet?

    Chiplet異構集成即將改變電子系統的設計、測試和制造方式。芯片行業的“先知”們相信這個未來是不可避免的。
    的頭像 發表于 07-25 08:57 ?766次閱讀

    Chiplet關鍵技術與挑戰

    半導體產業正在進入后摩爾時代,Chiplet應運而生。介紹了Chiplet技術現狀與接口標準,闡述了應用于Chiplet的先進封裝種類:多芯片
    的頭像 發表于 07-17 16:36 ?885次閱讀
    <b class='flag-5'>Chiplet</b>關鍵技術與<b class='flag-5'>挑戰</b>

    探討Chiplet封裝的優勢和挑戰

    Chiplet,就是小芯片/芯粒,是通過將原來集成于同一系統單晶片中的各個元件分拆,獨立為多個具特定功能的Chiplet,分開制造后再透過先進封裝技術將彼此互聯,最終
    發表于 07-06 11:28 ?575次閱讀
    探討<b class='flag-5'>Chiplet</b>封裝的優勢和<b class='flag-5'>挑戰</b>

    后摩爾時代Chiplet D2D解決方案

    Chiplet應用場景主要分兩種,第一種是將同工藝大芯片分割成多個小芯片,然后通過接口IP互連在一起實現算力堆疊;第二種是將不同工藝不同功能的芯片通過接口IP互連并封裝在一起實現
    的頭像 發表于 06-26 14:24 ?965次閱讀
    后摩爾<b class='flag-5'>時代</b>的<b class='flag-5'>Chiplet</b> D2D解決方案

    汽車行業下一個流行趨勢,chiplet?

    Chiplet是一個小型IC,有明確定義的功能子集,理論上可以與封裝中的其他chiplet結合。Chiplet的最大優勢之一是能夠實現“混搭”,與先進制程的定制化SoC相比成本更低。采用chi
    的頭像 發表于 06-20 09:20 ?561次閱讀
    汽車行業下一個流行趨勢,<b class='flag-5'>chiplet</b>?

    淺談芯片設計最大的挑戰機遇

    芯片以及異構3D-IC系統既是目前最大的機遇,也是面臨的最大挑戰。中國公司也是一個巨大的挑戰,尤其在EDA領域。他們那有很多初創公司,我們
    發表于 06-08 12:38 ?448次閱讀
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>