<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>模擬技術>SiC MOSFET:橋式結構中柵極-源極間電壓的動作-前言

SiC MOSFET:橋式結構中柵極-源極間電壓的動作-前言

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

如何復制下一代柵極驅動光電耦合器的改進,以驅動和保護SiC MOSFET

為了匹配CREE SiC MOSFET的低開關損耗,柵極驅動器必須能夠以快速壓擺率提供高輸出電流和電壓,以克服SiC MOSFET柵極電容。
2021-05-24 06:17:002391

SiC MOSFET學習筆記:各家SiC廠商的MOSFET結構

當前量產主流SiC MOSFET芯片元胞結構有兩大類,是按照柵極溝道的形狀來區分的,平面型和溝槽型。
2023-06-07 10:32:074310

SiC MOSFET柵極驅動電路的優化方案

在高壓開關電源應用中,相較傳統的硅MOSFET和IGBT,碳化硅(以下簡稱“SiC”)MOSFET有明顯的優勢。使用硅MOSFET可以實現高頻(數百千赫茲)開關,但它們不能用于非常高的電壓(>
2023-08-03 11:09:57740

MOSFET工作原理

防止兩個MOSFET管直通,通常串接一個0.5~1Ω小電阻用于限流,該電路適用于不要求隔離的功率開關設備。這兩種電路特點是結構簡單?! 」β?b class="flag-6" style="color: red">MOSFET 屬于電壓型控制器件,只要柵極之間施加
2019-06-14 00:37:57

MOSFET的具體概念以及注意事項-Agitekservice

是相互絕緣的,所以稱它為絕緣柵型場效應管。圖2—54(a)的L為溝道長度,W為溝道寬度。圖2—54所示的MOSFET,當柵極G和S之間不加任何電壓,即UGS=0時,由于漏兩個N+型區之間隔有
2018-08-07 14:16:14

MOSFET的重要特性–柵極閾值電壓

MOSFET的VGS(th):柵極閾值電壓MOSFET的VGS(th):柵極閾值電壓是為使MOSFET導通,柵極必需的電壓。也就是說,VGS如果是閾值以上的電壓,則MOSFET導通??赡苡?/div>
2019-05-02 09:41:04

SIC MOSFET

有使用過SIC MOSFET 的大佬嗎 想請教一下驅動電路是如何搭建的。
2021-04-02 15:43:15

SiC-MOSFET與Si-MOSFET的區別

電阻低,通道電阻高,因此具有驅動電壓柵極電壓Vgs越高導通電阻越低的特性。下圖表示SiC-MOSFET的導通電阻與Vgs的關系。導通電阻從Vgs為20V左右開始變化(下降)逐漸減少,接近
2018-11-30 11:34:24

SiC-MOSFET體二管特性

Si-MOSFET大得多。而在給柵極-施加18V電壓、SiC-MOSFET導通的條件下,電阻更小的通道部分(而非體二管部分)流過的電流占支配低位。為方便從結構角度理解各種狀態,下面還給出了MOSFET的截面圖
2018-11-27 16:40:24

SiC-MOSFET功率晶體管的結構與特征比較

”)應用越來越廣泛。關于SiC-MOSFET,這里給出了DMOS結構,不過目前ROHM已經開始量產特性更優異的溝槽結構SiC-MOSFET。具體情況計劃后續進行介紹。在特征方面,Si-DMOS存在
2018-11-30 11:35:30

SiC-MOSFET器件結構和特征

  1. 器件結構和特征  Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)?! GBT
2023-02-07 16:40:49

SiC-MOSFET有什么優點

1. 器件結構和特征Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)。IGBT通過
2019-04-09 04:58:00

SiC-MOSFET的可靠性

確認現在的產品情況,請點擊這里聯系我們。ROHM SiC-MOSFET的可靠性柵極氧化膜ROHM針對SiC上形成的柵極氧化膜,通過工藝開發和元器件結構優化,實現了與Si-MOSFET同等的可靠性
2018-11-30 11:30:41

SiC-MOSFET的應用實例

作的。全逆變器部分使用了3種晶體管(Si IGBT、第二代SiC-MOSFET、上一章介紹的第三代溝槽結構SiC-MOSFET),組成相同尺寸的移相DCDC轉換器,就是用來比較各產品效率的演示機
2018-11-27 16:38:39

SiC MOSFET SCT3030KL解決方案

專門的溝槽柵極結構(即柵極是在芯片表面構建的一個凹槽的側壁上成形的),與平面SiC MOSFET產品相比,輸入電容減小了35%,導通電阻減小了50%,性能更優異。圖4 SCT3030KL的內部電路
2019-07-09 04:20:19

SiC MOSFET的器件演變與技術優勢

(MPS)結構,該結構保持最佳場分布,但通過結合真正的少數載流子注入也可以增強浪涌能力。如今,SiC管非??煽?,它們已經證明了比硅功率二管更有利的FIT率?! ?b class="flag-6" style="color: red">MOSFET替代品  2008年推出
2023-02-27 13:48:12

SiC MOSFET:經濟高效且可靠的高功率解決方案

柵極電壓,在20V柵極電壓下從幾乎300A降低到12V柵極電壓時的130A左右。即使碳化硅MOSFET的短路耐受時間短于IGTB的短路耐受時間,也可以通過集成在柵極驅動器IC的去飽和功能來保護SiC
2019-07-30 15:15:17

SiC SBD的器件結構和特征

的快速充電器等的功率因數校正電路(PFC電路)和整流電路。2. SiC-SBD的正向特性SiC-SBD的開啟電壓與Si-FRD相同,小于1V。開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度
2019-03-14 06:20:14

SiC功率器件SiC-MOSFET的特點

1. 器件結構和特征Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)。IGBT通過
2019-05-07 06:21:55

SiC功率模塊的柵極驅動其1

SiC-MOSFET的構成,SiC-MOSFET切換(開關)時高邊SiC-MOSFET柵極電壓產生振鈴,低邊SiC-MOSFET柵極電壓升高,SiC-MOSFET動作的現象。通過下面的波形圖可以很容易了解這是
2018-11-30 11:31:17

SiC碳化硅MOS驅動的PCB布局方法解析

-電壓振鈴。將柵極驅動放置在緊鄰 SiC MOSFET 的位置,以最小的走線長度將柵極回路電感降至最低。此外,這種做法還有助于使各并聯 MOSFET 設計之間的共電感保持恒定。以最小走線長
2022-03-24 18:03:24

Sic MOSFET SCT30N120 、SCT50N120 功率管

Sic MOSFET 主要優勢.更小的尺寸及更輕的系統.降低無器件的尺寸/成本.更高的系統效率.降低的制冷需求和散熱器尺寸Sic MOSFET ,高壓開關的突破.SCT30N120
2017-07-27 17:50:07

柵極加一個電阻的作用是什么

柵極之間加一個電阻,這個電阻起到什么作用?一是為場效應管提供偏置電壓;二是起到瀉放電阻的作用:保護柵極G-S;
2019-05-23 07:29:18

柵極驅動器是什么

IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅動器和其它系統的開關元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為集電極
2021-01-27 07:59:24

柵極驅動器是什么,為何需要柵極驅動器?

摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅動器和其它系統的開關元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為
2021-07-09 07:00:00

拓撲結構功率MOSFET驅動電路設計

結構  引言   功率MOSFET以其開關速度快、驅動功率小和功耗低等優點在中小容量的變流器得到了廣泛的應用。當采用功率MOSFET拓撲結構時,同一臂上的兩個功率器件在轉換過程,柵極驅動信號
2018-08-27 16:00:08

GaN和SiC區別

開來,并應用于電纜以將電線與電纜所穿過的環境隔離開來。 SiC MOSFET可作為1200V,20A器件提供,在+ 15V柵極-電壓下具有100mΩ。此外,固有的導通電阻降低也使SiC MOSFET
2022-08-12 09:42:07

MOS管的開關電路柵極電阻和柵電阻是怎么計算的?

MOS管的開關電路柵極電阻R5和柵電阻R6是怎么計算的?在這個電路中有什么用。已知道VDD=3.7V,在可變電阻狀態,作為開關電路是怎么計算R5和R6?
2021-04-19 00:07:09

N溝道和P溝道MOSFET的區別是什么

的生產成本也更低,因此價格更低,性能高于 p 溝道 MOSFET。在P溝道MOSFET,連接到正電壓,當柵極上的電壓低于某個閾值(Vgs 0)時,FET導通。這意味著,如果您想使用 P 溝道
2023-02-02 16:26:45

Si-MOSFET與IGBT的區別

時的波形可以看到,SiC-MOSFET原理上不流過尾電流,因此相應的開關損耗非常小。在本例,SiC-MOSFET+SBD(肖特基勢壘二管)的組合與IGBT+FRD(快速恢復二管)的關斷損耗Eoff相比
2018-12-03 14:29:26

【羅姆SiC-MOSFET 試用體驗連載】SiC開發板主要電路分析以及SiC Mosfet開關速率測試

,以及電壓進行采集,由于使用的非隔離示波器,就在單管上進行了對兩個波形進行了記錄:綠色:柵極電壓;黃色:電壓;由于Mosfet使用的SiC材料,通過分析以上兩者電壓的導通時間可以判斷出
2020-06-07 15:46:23

【羅姆SiC-MOSFET 試用體驗連載】羅姆第三代溝槽柵型SiC-MOSFET(之一)

導電溝道越大,則導通電阻越??;但是柵極驅動電壓太大的話,很容易將柵極和漏之間絕緣層擊穿,造成Mosfet管的永久失效;3.為了增加開關管的速度,減少開關管的關斷時間是有必要的;且為了提高Mosfet
2020-07-16 14:55:31

一種智能二管全整流器設計

整流器配置的四個二管是對AC電壓進行整流的最簡單、也是最常規的方法。在一個整流器運行一個二管可以為全整流器和汽車用交流發電機提供一個簡單、劃算且零靜態電流的解決方案。不過,雖然二管通常
2018-09-03 15:32:01

SiC mosfet選擇柵極驅動IC時的關鍵參數

和更快的切換速度與傳統的硅mosfet和絕緣柵雙極晶體管(igbt)相比,SiC mosfet柵極驅動在設計過程必須仔細考慮需求。本應用程序說明涵蓋為SiC mosfet選擇柵極驅動IC時的關鍵參數。
2023-06-16 06:04:07

為何使用 SiC MOSFET

要充分認識 SiC MOSFET 的功能,一種有用的方法就是將它們與同等的硅器件進行比較。SiC 器件可以阻斷的電壓是硅器件的 10 倍,具有更高的電流密度,能夠以 10 倍的更快速度在導通和關斷
2017-12-18 13:58:36

從硅過渡到碳化硅,MOSFET結構及性能優劣勢對比

MOSFET柵極為低電平時,其漏電壓上升直至使SiC JFET的GS電壓達到其關斷的負壓時,這時器件關斷。Cascode結構主要的優點是相同的導通電阻有更小的芯片面積,由于柵極開關由Si MOSFET控制
2022-03-29 10:58:06

使采用了SiC MOSFET的高效AC/DC轉換器的設計更容易

,而且結構簡單 ??娠@著減少SiC MOSFET選型和柵極驅動電路調整等 設計和評估工時 。 內置各種保護功能 ,基本上只需根據要設計的電源規格設置外置元器件的常數即可,使利用了SiC MOSFET性能
2022-07-27 11:00:52

SiC模塊柵極誤導通的處理方法

和CN4的+18V、CN3和CN6的-3V為驅動器的電源。電路增加了CGS和米勒鉗位MOSFET,使包括柵極電阻在內均可調整。將該柵極驅動器與全SiC功率模塊的柵極連接,來確認柵極電壓的升高情況
2018-11-27 16:41:26

功率MOSFET結構及特點

2的結構,用深度來換面積,將柵極埋入基體,形成垂直的溝道,從而保持溝道的寬度,這樣形成的結構稱為垂直導電的溝槽結構。圖3:N溝道垂直導電的溝槽結構及Rdson組成 工作原理是:柵極加正向電壓
2016-10-10 10:58:30

功率MOSFET柵極電荷特性

和漏電荷Qgs:柵極電荷柵極電荷測試的原理圖和相關波形見圖1所示。在測量電路,柵極使用恒流源驅動,也就是使用恒流源IG給測試器件的柵極充電,漏電流ID由外部電路提供,VDS設定為最大
2017-01-13 15:14:07

功率MOSFET結構特點是什么?為什么要在柵極之間并聯一個電阻?

功率MOSFET結構特點為什么要在柵極之間并聯一個電阻呢?
2021-03-10 06:19:21

反激開關MOSFET流出的電流精細剖析

,導致Cp上的電壓降低。反激開關MOSFET 流出的電流(Is)波形的轉折點的分析。 很多工程師在電源開發調試過程,測的的波形的一些關鍵點不是很清楚,下面針對反激電源實測波形來分析一下。問題一
2018-10-10 20:44:59

基于MOSFET的整流器件設計方法

本帖最后由 liuyongwangzi 于 2018-5-30 10:03 編輯 使用整流器配置的四個二管是對AC電壓進行整流的最簡單、也是最常規的方法。在一個整流器運行一個
2018-05-30 10:01:53

如何使用電流驅動器BM60059FV-C驅動SiC MOSFET和IGBT?

驅動器的優勢和期望,開發了一種測試板,其中測試了分立式IGBT和SiC-MOSFET。標準電壓驅動器也在另一塊板上實現,見圖3?!     D3.帶電壓驅動器(頂部)和電流驅動器(底部)的半
2023-02-21 16:36:47

如何定義柵極電阻器、自舉電容器以及為什么高側柵極驅動器可能需要對MOSFET施加一些電阻?

!它在高側柵極驅動器連接(R57、R58 和 R59)也有 4R7 電阻,我不明白為什么需要這些。是否有任何設計指南可以告訴我如何定義柵極電阻器、自舉電容器以及為什么高側柵極驅動器可能需要對 MOSFET 施加一些電阻?
2023-04-19 06:36:06

如何很好地驅動上MOSFET

MOSFET一般工作在拓撲結構模式下,如圖1所示。由于下橋MOSFET驅動電壓的參考點為地,較容易設計驅動電路,而上的驅動電壓是跟隨相線電壓浮動的,因此如何很好地驅動上MOSFET成了設...
2021-07-27 06:44:41

如何避免二整流器的導通損耗?

MOSFET很難在圖騰柱PFC拓撲的連續導通模式(CCM)下工作,因為體二管的反向恢復特性很差。碳化硅(SiCMOSFET采用全新的技術,比Si MOSFET具有更勝一籌的開關性能、極小
2022-04-19 08:00:00

實現隔離柵極驅動器

所需的高電流。在此,柵極驅動器以差分方式驅動脈沖變壓器的原邊,兩個副邊繞組驅動半的各個柵極。在這種應用,脈沖變壓器具有顯著優勢,不需要用隔離電源來驅動副邊MOSFET。圖3. 脈沖變壓器半柵極
2018-10-23 11:49:22

實現隔離柵極驅動器的設計基礎

的一個潛在問題是,僅有一個隔離輸入通道,而且依賴高壓驅動器來提供通道所需的時序匹配以及應用所需的死區。另一問題是,高壓柵極驅動器并無電流隔離,而是依賴結隔離來分離同一IC的上臂驅動電壓和下橋臂驅動
2018-10-16 16:00:23

實現隔離柵極驅動器的設計途徑

MOSFET柵極充電所需的高電流。在此,柵極驅動器以差分方式驅動脈沖變壓器的原邊,兩個副邊繞組驅動半的各個柵極。在這種應用,脈沖變壓器具有顯著優勢,不需要用隔離電源來驅動副邊MOSFET.  圖3.
2018-09-26 09:57:10

標準硅MOSFET功率晶體管的結構/二次擊穿/損耗

  1、結構  第一個功率MOSFET - 與小信號MOSFET不同 -出現在1978年左右上市,主要供應商是Siliconix。它們是所謂的V-MOS設備。MOSFET的特點是和漏之間的表面
2023-02-20 16:40:52

氮化鎵功率晶體管與Si SJMOS和SiC MOS晶體管對分分析哪個好?

是Qgd,它描述了柵極開關和開關關斷時間關斷所需的電荷。這兩個參數指示關斷能力和損耗,從而指示最大工作頻率和效率。關斷時間toff通常不顯示在晶體管數據手冊,但可以根據參考書[1]在給定的開關電壓
2023-02-27 09:37:29

汽車類雙通道SiC MOSFET柵極驅動器包括BOM及層圖

描述此參考設計是一種通過汽車認證的隔離柵極驅動器解決方案,可在半配置驅動碳化硅 (SiC) MOSFET。此設計分別為雙通道隔離柵極驅動器提供兩個推挽偏置電源,其中每個電源提供 +15V
2018-10-16 17:15:55

溝槽結構SiC-MOSFET與實際產品

本章將介紹最新的第三代SiC-MOSFET,以及可供應的SiC-MOSFET的相關信息。獨有的雙溝槽結構SiC-MOSFETSiC-MOSFET不斷發展的進程,ROHM于世界首家實現了溝槽柵極
2018-12-05 10:04:41

淺析SiC-MOSFET

MOS的結構碳化硅MOSFETSiC MOSFET)N+區和P井摻雜都是采用離子注入的方式,在1700℃溫度中進行退火激活。一個關鍵的工藝是碳化硅MOS柵氧化物的形成。由于碳化硅材料中同時有Si和C
2019-09-17 09:05:05

測量SiC MOSFET柵-電壓時的注意事項

SiCMOSFET具有出色的開關特性,但由于其開關過程電壓和電流變化非常大,因此如Tech Web基礎知識 SiC功率元器件“SiC MOSFET結構柵極電壓動作-前言”中介
2022-09-20 08:00:00

用于PFC的碳化硅MOSFET介紹

MOSFET的開關損耗為0.6 mJ。這大約是IGBT測量的2.5 mJ的四分之一。在每種情況下,均在 800 V、漏/拉電流 10 A、環境溫度 150 °C 和最佳柵極-發射閾值電壓下進行測試(圖
2023-02-22 16:34:53

電機控制MOSFET和IGBT基礎知識

。雖然有許多方式來繪制MOSFET管,但最常見的符號如圖2。注意有且只有三端連接:、漏柵極;柵極控制從到漏的電流。較小的MOSFET可以在標準的MOS IC裸芯上直接制造,因此它可以是單芯片
2016-01-27 17:22:21

碳化硅MOSFET是如何制造的?如何驅動碳化硅場效應管?

柵極處獲得 20V,以便在最小 RDSon 時導通?! ‘斠?V關閉SiC MOSFET時,必須考慮一種效應,即Si MOSFET已知的米勒效應。當器件用于配置時,這種影響可能會出現問題,尤其是
2023-02-24 15:03:59

碳化硅SiC MOSFET:低導通電阻和高可靠性的肖特基勢壘二

小型化。然而,必須首先解決一個問題:SiC MOSFET反向操作期間,體二管雙極性導通會造成導通電阻性能下降。將肖特基勢壘二管嵌入MOSFET,使體二管失活的器件結構,但發現用嵌入SBD代替
2023-04-11 15:29:18

羅姆成功實現SiC-SBD與SiC-MOSFET的一體化封裝

低,可靠性高,在各種應用中非常有助于設備實現更低功耗和小型化。本產品于世界首次※成功實現SiC-SBD與SiC-MOSFET的一體化封裝。內部二管的正向電壓(VF)降低70%以上,實現更低損耗的同時
2019-03-18 23:16:12

設計中使用的電源IC:專為SiC-MOSFET優化

輸入動作禁止功能)、過流保護、二次側電壓過壓保護等。在高耐壓應用,與Si-MOSFET相比,SiC-MOSFET具有開關損耗及傳導損耗少、溫度帶來的特性波動小的優點。這些優點有利于解決近年來的重要課題
2018-11-27 16:54:24

降低二整流器的導通損耗方案

MOSFET很難在圖騰柱PFC拓撲的連續導通模式(CCM)下工作,因為體二管的反向恢復特性很差。碳化硅(SiCMOSFET采用全新的技術,比Si MOSFET具有更勝一籌的開關性能、極小
2022-05-30 10:01:52

隔離柵極驅動器揭秘

IGBT/功率 MOSFET 是一種電壓控制型器件,可用作電源電路、電機驅動器和其它系統的開關元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為
2018-10-25 10:22:56

隔離柵極驅動器的揭秘

Sanket Sapre摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅動器和其它系統的開關元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對
2018-11-01 11:35:35

集成高側MOSFET的開關損耗分析

1的t1),電壓(VGS)正接近MOSFET的閾值電壓,VTH和漏電流為零。因此,在此期間的功率損耗為零。在t2時段,MOSFET的寄生輸入電容(CISS)開始充電,而漏電流開始流經
2022-11-16 08:00:15

面向SiC MOSFET的STGAP2SICSN隔離單通道柵極驅動

單通道STGAP2SiCSN柵極驅動器旨在優化SiC MOSFET的控制,采用節省空間的窄體SO-8封裝,通過精確的PWM控制提供強大穩定的性能。隨著SiC技術廣泛應用于提高功率轉換效率,STGAP2SiCSN簡化了設計、節省了空間,并增強了節能型動力系統、驅動器和控制的穩健性和可靠性。
2023-09-05 07:32:19

驅動器引腳的 MOSFET 的驅動電路開關耗損改善措施

的影響,而且由于 RG_EXT 是外置電阻,因此也可調。下面同時列出公式(1)用以比較。能給我們看一下比較數據嗎?這里有雙脈沖測試的比較數據。這是為了將以往產品和具有驅動器引腳的 SiC MOSFET
2020-11-10 06:00:00

驅動器引腳的效果:雙脈沖測試比較

所示的電路圖進行了雙脈沖測試,在測試,使低邊(LS)的MOSFET執行開關動作。高邊(HS)MOSFET則通過RG_EXT連接柵極引腳和引腳或驅動器引腳,并且僅用于體二管的換流工作。在電路圖
2022-06-17 16:06:12

ADI隔離柵極驅動器和WOLFSPEED SiC MOSFET

ADI隔離柵極驅動器和WOLFSPEED SiC MOSFET
2021-05-27 13:55:0830

淺談柵極-源極電壓產生的浪涌

中,我們將對相應的對策進行探討。關于柵極-源極間電壓產生的浪涌,在之前發布的Tech Web基礎知識 SiC功率元器件 應用篇的“SiC MOSFET:橋式結構柵極-源極間電壓動作”中已進行了詳細說明。
2021-06-12 17:12:002563

測量柵極和源極之間電壓時需要注意的事項

SiC MOSFET具有出色的開關特性,但由于其開關過程中電壓和電流變化非常大,因此如Tech Web基礎知識 SiC功率元器件“SiC MOSFET:橋式結構柵極-源極間電壓動作-前言”中介紹的需要準確測量柵極和源極之間產生的浪涌。
2022-09-14 14:28:53753

第三代雙溝槽結構SiC-MOSFET介紹

SiC-MOSFET不斷發展的進程中,ROHM于世界首家實現了溝槽柵極結構SiC-MOSFET的量產。這就是ROHM的第三代SiC-MOSFET。溝槽結構在Si-MOSFET中已被廣為采用,在SiC-MOSFET中由于溝槽結構有利于降低導通電阻也備受關注。
2023-02-08 13:43:211381

SiC MOSFET:橋式結構柵極源極間電壓動作-SiC MOSFET的橋式結構

在探討“SiC MOSFET:橋式結構中Gate-Source電壓動作”時,本文先對SiC MOSFET的橋式結構和工作進行介紹,這也是這個主題的前提。
2023-02-08 13:43:23340

SiC MOSFET:橋式結構柵極-源極間電壓動作-SiC MOSFET柵極驅動電路和Turn-on/Turn-off動作

本文將針對上一篇文章中介紹過的SiC MOSFET橋式結構柵極驅動電路及其導通(Turn-on)/關斷( Turn-off)動作進行解說。
2023-02-08 13:43:23491

SiC MOSFET:橋式結構柵極-源極間電壓動作-橋式電路的開關產生的電流和電壓

在上一篇文章中,對SiC MOSFET橋式結構柵極驅動電路的導通(Turn-on)/關斷( Turn-off)動作進行了解說。
2023-02-08 13:43:23291

SiC MOSFET:橋式結構柵極-源極間電壓動作-低邊開關導通時的Gate-Source間電壓動作

上一篇文章中,簡單介紹了SiC MOSFET橋式結構柵極驅動電路的開關工作帶來的VDS和ID的變化所產生的電流和電壓情況。本文將詳細介紹SiC MOSFET在LS導通時的動作情況。
2023-02-08 13:43:23300

SiC MOSFET:橋式結構柵極-源極間電壓動作-低邊開關關斷時的柵極-源極間電壓動作

上一篇文章中介紹了LS開關導通時柵極 – 源極間電壓動作。本文將繼續介紹LS關斷時的動作情況。低邊開關關斷時的柵極 – 源極間電壓動作:下面是表示LS MOSFET關斷時的電流動作的等效電路和波形示意圖。
2023-02-08 13:43:23399

SiC MOSFET柵極-源極電壓的浪涌抑制方法-負電壓浪涌對策

本文的關鍵要點?通過采取措施防止SiC MOSFET柵極-源極間電壓的負電壓浪涌,來防止SiC MOSFET的LS導通時,SiC MOSFET的HS誤導通。?具體方法取決于各電路中所示的對策電路的負載。
2023-02-09 10:19:16589

SiC MOSFET柵極-源極電壓的浪涌抑制方法-浪涌抑制電路的電路板布局注意事項

關于SiC功率元器件中柵極-源極間電壓產生的浪涌,在之前發布的Tech Web基礎知識 SiC功率元器件 應用篇的“SiC MOSFET:橋式結構柵極-源極間電壓動作”中已進行了詳細說明,如果需要了解,請參閱這篇文章。
2023-02-09 10:19:17707

SiC MOSFET結構及特性

SiC功率MOSFET內部晶胞單元的結構,主要有二種:平面結構和溝槽結構。平面SiC MOSFET結構,
2023-02-16 09:40:102938

溝槽結構SiC-MOSFET與實際產品

SiC-MOSFET不斷發展的進程中,ROHM于世界首家實現了溝槽柵極結構SiC-MOSFET的量產。這就是ROHM的第三代SiC-MOSFET。
2023-02-24 11:48:18426

SiC MOSFET的橋式結構柵極驅動電路

下面給出的電路圖是在橋式結構中使用SiC MOSFET時最簡單的同步式boost電路。該電路中使用的SiC MOSFET的高邊(HS)和低邊(LS)是交替導通的,為了防止HS和LS同時導通,設置了兩個SiC MOSFET均為OFF的死區時間。右下方的波形表示其門極信號(VG)時序。
2023-02-27 13:41:58737

SiC MOSFET學習筆記(三)SiC驅動方案

驅動芯片,需要考慮如下幾個方面: 驅動電平與驅動電流的要求首先,由于SiC MOSFET器件需要工作在高頻開關場合,其面對的由于寄生參數所帶來的影響更加顯著。由于SiC MOSFET本身柵極開啟電壓
2023-02-27 14:42:0479

溝槽結構SiC MOSFET常見的類型

SiC MOSFET溝槽結構柵極埋入基體中形成垂直溝道,盡管其工藝復雜,單元一致性比平面結構差。
2023-04-01 09:37:171329

測量SiC MOSFET柵-源電壓時的注意事項:一般測量方法

SiC MOSFET具有出色的開關特性,但由于其開關過程中電壓和電流變化非常大,因此如Tech Web基礎知識 SiC功率元器件“SiC MOSFET:橋式結構柵極-源極間電壓動作-前言”中介
2023-04-06 09:11:46731

R課堂 | SiC MOSFET柵極-源極電壓的浪涌抑制方法-總結

布局注意事項。 橋式結構SiC MOSFET柵極信號,由于工作時MOSFET之間的動作相互關聯,因此導致SiC MOSFET的柵-源電壓中會產生意外的電壓浪涌。這種浪涌的抑制方法除了增加抑制電路外,電路板的版圖布局也很重要。希望您根據具體情況,參考本系列文章中介紹的
2023-04-13 12:20:02814

測量SiC MOSFET柵-源電壓時的注意事項:一般測量方法

SiC MOSFET具有出色的開關特性,但由于其開關過程中電壓和電流變化非常大,因此如Tech Web基礎知識 SiC功率元器件“SiC MOSFET:橋式結構柵極-源極間電壓動作-前言”中介
2023-05-08 11:23:14644

MOSFET柵極電路電壓對電流的影響?MOSFET柵極電路電阻的作用?

MOSFET柵極電路電壓對電流的影響?MOSFET柵極電路電阻的作用? MOSFET(金屬-氧化物-半導體場效應晶體管)是一種廣泛應用于電子設備中的半導體器件。在MOSFET中,柵極電路的電壓和電阻
2023-10-22 15:18:121369

SiC MOSFET:橋式結構柵極-源極間電壓動作

SiC MOSFET:橋式結構柵極-源極間電壓動作
2023-12-07 14:34:17223

SiC MOSFET柵極驅動電路和Turn-on/Turn-off動作

SiC MOSFET柵極驅動電路和Turn-on/Turn-off動作
2023-12-07 15:52:38185

SiC MOSFET的橋式結構

SiC MOSFET的橋式結構
2023-12-07 16:00:26157

MOSFET柵極電路常見作用有哪些?MOSFET柵極電路電壓對電流的影響?

MOSFET柵極電路常見的作用有哪些?MOSFET柵極電路電壓對電流的影響? MOSFET(金屬氧化物半導體場效應晶體管)是一種非常重要的電子器件,廣泛應用于各種電子電路中。MOSFET柵極電路
2023-11-29 17:46:40571

已全部加載完成

亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>