<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

SiC MOSFET 和Si MOSFET寄生電容在高頻電源中的損耗對比

jf_pJlTbmA9 ? 來源:富昌電子 ? 作者:富昌電子 ? 2023-12-05 14:31 ? 次閱讀

引言:富昌電子(Future Electronics)一直致力于以專業的技術服務,為客戶打造個性化的解決方案,并縮短產品設計周期。在第三代半導體的實際應用領域,富昌電子結合自身的技術積累和項目經驗,落筆于SiC相關設計的系列文章。希望以此給到大家一定的設計參考,并期待與您進一步的交流。

前兩篇文章我們分別探討了SiC MOSFET的驅動電壓,以及SiC器件驅動設計中的寄生導通問題。本文作為系列文章的第三篇,會從SiC MOS寄生電容損耗與傳統Si MOS作比較,給出分析和計算過程,供設計工程師在選擇功率開關器件時參考!

電力電子行業功率器件的不斷發展,第三代半導體(SiC,GaN)代替硅半導體已經是大勢所趨。

由于Si MOSFET其輸入阻抗高,隨著反向耐壓的提高,通態電阻也急劇上升,從而限制了在高壓大電流場合的應用。為了進一步提高開關電源的效率,迫切需要一種能承受足夠高耐壓和極快開關速度,且具有很低導通電阻和寄生電容的功率半導體器件。

SiC MOSFET有極其低的導通電阻RDS(ON),導致了極其優越的正向壓降和導通損耗, 并且具有相當低的柵極電荷和非常低的漏電流,能適合超快的開關速度,更適合高電壓大電流高功率密度的應用環境。

我們都知道開關電源的頻率越高,每秒開關管改變狀態的次數就越多,開關損耗和與開關頻率成正比。

富昌電子在長期的電源電路研究中發現:開關電源中所有與開關頻率有關的損耗,最顯著的往往是開關管自身產生的損耗。

本文從MOSFET的寄生電容的角度,結合BOOST PFC電路對Si MOSFET和SiC MOSFET展開討論。

對于功率MOSFET寄生電容,在開關轉換的階段,MOSFET柵極表現為一個簡單的輸入電容。通過驅動電阻 充電或放電。實際上,柵極對漏極和原極之間發生的事情“漠不關心”。功率MOSFET可等效為下圖:

從驅動信號角度去觀察柵極,有效輸入充電電容Cg是Cgs與Cgd并聯:

因此,柵極電容充放電循環的時間常數為:

從這個公式來看,似乎暗示著MOSFET導通和關斷時的驅動電阻是一樣,實際上兩者有比較大的差別,那是因為,我們希望導通時的速率稍慢,而關斷時的速率稍快的原因。

MOSFET的寄生電容在交流系統中的表示方法為:有效輸入電容Ciss,輸出電容Coss,反向傳輸電容Crss. 它們都與MOSFET寄生電容有關:

通常也會寫成:

為了在同條件下比較Si MOSFET 和 SiC MOSFET的寄生結電容對高頻電源效率的影響。我們用全電壓輸入,輸出500w,工作頻率75kHz的PFC電路來做比較,選擇onsemi, SI MOSFET FQA6N90C 和 SiC MOSFET NTHL060N090SC1來完成該對比。

富昌電子在研究過程中了解到,輸出功率達到500W,Si MOSFET 需要兩個MOS 并聯才能滿足設計要求,本文中我們暫且忽略這個差別,先從單個的SI MOSFET和SiC MOSFET來做比較。

靜態寄生參數對比:
FQA6N90C (SI MOSFET)

NTHL060N090SC1(SiC MOSFET):

在實際MOSFET 工作過程中的電壓和電流波形如下:

MOSFET的導通過程中的驅動損耗在 t1+ t2+ t3 +t4時間內產生,而交叉時間僅為:t2+ t3,關斷過程中的驅動損耗在 t6+ t7+ t8 +t9時間內產生,而交叉時間僅為:t7+ t8 。

假設MOSFET門極的驅動電阻為10歐姆,關斷電阻為5歐姆,可得FQA6N90C時間常數Tg:

寄生電容C_ds,因為它不和柵極相連,因此不影響到MOSFET導通過程中的V-I交叉損耗。但是,該電容在MOSFET關斷時充電,在MOSFET導通時把儲能全部傾瀉到MOSFET中。因此在計算MOSFET的損耗時,該電容不能忽略,特別在離線式的AC-DC的電源中,該寄生電容嚴重影響到電源的效率。在低壓輸入的電源中,該電容對效率的影響表現的不是很明顯。

富昌電子研究結論:在同樣輸入和輸出的電參數,封裝幾乎相同的條件下,比較Si Mosfet和SiC Mosfet寄生電容帶來的損耗可知,SiC節省了60%的寄生損耗。如果采取兩顆Si MOFET并聯,達到輸出500W PFC的設計目的,Si MOFET寄生電容的損耗是SiC的3.07倍。

總結

本文針對MOS的寄生電容做出了分析,并選用onsemi同等功率的SiC與SiMOST進行了設計比較。這部分的損耗,只是電路實際工作過程中MOSFET損耗的一部分,MOSFET的損耗分析稍顯復雜, 此處沒有展開探討,富昌電子后續會連載文章,剖析電路設計中的難點。敬請期待!

  • 審核編輯 黃宇
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2505

    瀏覽量

    61629
  • 損耗
    +關注

    關注

    0

    文章

    186

    瀏覽量

    15967
  • 寄生電容
    +關注

    關注

    1

    文章

    284

    瀏覽量

    18996
  • 高頻電源
    +關注

    關注

    0

    文章

    19

    瀏覽量

    14670
收藏 人收藏

    評論

    相關推薦

    開關MOSFET為什么會有振鈴和電壓尖峰

    的漏極、源極和門極連接中存在不可避免的寄生電感。當MOSFET從導通狀態切換到截止狀態或者反之時,流過這些寄生電感的電流發生急劇變化,根據V = L(di/dt),會在MOSFET兩端
    的頭像 發表于 06-09 11:29 ?266次閱讀

    碳化硅模塊(SiC模塊/MODULE)大電流下的驅動器研究

    由于碳化硅(SiCMOSFET具有高頻、低損耗、高耐溫特性,提升新能源汽車逆變器效率和功率密度方面具有巨大優勢。對于
    發表于 05-14 09:57

    如何更好地驅動SiC MOSFET器件?

    IGBT的驅動電壓一般都是15V,而SiC MOSFET的推薦驅動電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅動電壓有助于降低器件導通損耗,SiC
    的頭像 發表于 05-13 16:10 ?218次閱讀

    通用PWM發電機,可以用任何型號替換SiC MOSFET嗎?

    通用PWM發電機,我可以用任何型號替換SiC MOSFET嗎?
    發表于 03-01 06:34

    詳解MOS管的寄生電感和寄生電容

    寄生電容寄生電感是指在電路中存在的非意圖的電容和電感元件。 它們通常是由于電路布局、線路長度、器件之間的物理距離等因素引起的。
    的頭像 發表于 02-21 09:45 ?1073次閱讀
    詳解MOS管的<b class='flag-5'>寄生</b>電感和<b class='flag-5'>寄生電容</b>

    PCB寄生電容的影響 PCB寄生電容計算 PCB寄生電容怎么消除

    寄生電容有一個通用的定義:寄生電容是存在于由絕緣體隔開的兩個導電結構之間的虛擬電容(通常不需要的),是PCB布局中的一種效應,其中傳播的信號表現得好像就是電容,但其實并不是真正的
    的頭像 發表于 01-18 15:36 ?1459次閱讀
    PCB<b class='flag-5'>寄生電容</b>的影響 PCB<b class='flag-5'>寄生電容</b>計算 PCB<b class='flag-5'>寄生電容</b>怎么消除

    SIC MOSFET在電路中的作用是什么?

    MOSFET的基本結構。SIC MOSFET是一種由碳化硅材料制成的傳導類型晶體管。與傳統的硅MOSFET相比,SIC
    的頭像 發表于 12-21 11:27 ?981次閱讀

    SiC MOSFET驅動電壓尖峰的抑制方法簡析(下)

    高頻、高速開關是碳化硅(SiC) MOSFET的重要優勢之一,這能讓系統效率顯著提升,但也會在寄生電感和電容上產生更大的振蕩,從而在驅動電壓
    的頭像 發表于 12-20 09:20 ?1931次閱讀
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>驅動電壓尖峰的抑制方法簡析(下)

    Si對比SiC MOSFET 改變技術—是正確的做法

    Si對比SiC MOSFET 改變技術—是正確的做法
    的頭像 發表于 11-29 16:16 ?218次閱讀
    <b class='flag-5'>Si</b><b class='flag-5'>對比</b><b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> 改變技術—是正確的做法

    使用SiC MOSFET時如何盡量降低電磁干擾和開關損耗

    使用SiC MOSFET時如何盡量降低電磁干擾和開關損耗
    的頭像 發表于 11-23 09:08 ?490次閱讀
    使用<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>時如何盡量降低電磁干擾和開關<b class='flag-5'>損耗</b>

    寄生電容對MOS管快速關斷的影響

    寄生電容對MOS管快速關斷的影響 MOS(Metal Oxide Semiconductor)管是一種晶體管,它以其高性能和可靠性而廣泛應用于許多電子設備,如功率放大器和開關電源。盡管MOS管具有
    的頭像 發表于 09-17 10:46 ?1729次閱讀

    如何最大限度地提高SiC MOSFET性能呢?

    在高功率應用中,碳化硅(SiC)MOSFET與硅(Si)IGBT相比具有多項優勢。其中包括更低的傳導和開關損耗以及更好的高溫性能。
    發表于 09-11 14:55 ?473次閱讀
    如何最大限度地提高<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>性能呢?

    pcb連線寄生電容一般多少

    pcb連線寄生電容一般多少 隨著電子產品制造技術的成熟和發展,隨之而來的是布線技術的迅速發展。不同的 PCB 布線技術對于電路性能的影響不同,而其中最常見的問題之一就是 PCB 連線寄生電容。這種
    的頭像 發表于 08-27 16:19 ?1928次閱讀

    SiC MOSFET器件的結構及特性

    ,N區夾在兩個P區域之間,當電流被限制在靠近P體區域的狹窄的N區中流過時,將產生JFET效應,從而增加通態電阻;同時,這種結構的寄生電容也較大。
    發表于 06-19 16:39 ?7次下載

    SiC mosfet選擇柵極驅動IC時的關鍵參數

    和更快的切換速度與傳統的硅mosfet和絕緣柵雙極晶體管(igbt)相比,SiC mosfet柵極驅動設計過程必須仔細考慮需求。本應用程
    發表于 06-16 06:04
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>