<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一文看懂SiC功率器件

貞光科技 ? 2023-08-21 17:14 ? 次閱讀

一、什么是SiC半導體?

1. SiC材料的物性和特征

SiC(碳化硅)是一種由Si(硅)和C(碳)構成的化合物半導體材料。不僅絕緣擊穿場強是Si的10倍,帶隙是Si的3倍,而且在器件制作時可以在較寬范圍內控制必要的p型、n型,所以被認為是一種超越Si極限的功率器件材料。

SiC中存在各種多型體(結晶多系),它們的物性值也各不相同。用于功率器件制作,4H-SiC最為合適。

defbf4fb68024b7bb918a6d554e891e0~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=hVlybS1frjME6LpBV6gYCuSi00A%3D

2. 功率器件的特征

SiC的絕緣擊穿場強是Si的10倍,因此與Si器件相比,能夠以具有更高的雜質濃度和更薄的厚度的漂移層作出600V~數千V的高耐壓功率器件。高耐壓功率器件的阻抗主要由該漂移層的阻抗組成,因此采用SiC可以得到單位面積導通電阻非常低的高耐壓器件。

理論上,相同耐壓的器件,SiC的單位面積的漂移層阻抗可以降低到Si的1/300。而Si材料中,為了改善伴隨高耐壓化而引起的導通電阻增大的問題,主要采用如IGBT(Insulated Gate Bipolar Transistor : 絕緣柵極雙極型晶體管)等少數載流子器件(雙極型器件),但是卻存在開關損耗大的問題,其結果是由此產生的發熱會限制IGBT的高頻驅動。SiC材料卻能夠以高頻器件結構的多數載流子器件(肖特基勢壘二極管MOSFET)去實現高耐壓,從而同時實現 "高耐壓"、"低導通電阻"、"高頻" 這三個特性。

另外,帶隙較寬,是Si的3倍,因此SiC功率器件即使在高溫下也可以穩定工作。

二、SiC-MOSFET詳解

1. 器件結構和特征

Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓中主要采用IGBT(絕緣柵極雙極型晶體管)。

IGBT通過電導率調制,向漂移層內注入作為少數載流子的空穴,因此導通電阻比MOSFET還要小,但是同時由于少數載流子的積聚,在Turn-off時會產生尾電流,從而造成極大的開關損耗。

SiC器件漂移層的阻抗比Si器件低,不需要進行電導率調制就能夠以MOSFET實現高耐壓和低阻抗。

而且MOSFET原理上不產生尾電流,所以用SiC-MOSFET替代IGBT時,能夠明顯地減少開關損耗,并且實現散熱部件的小型化。

另外,SiC-MOSFET能夠在IGBT不能工作的高頻條件下驅動,從而也可以實現無源器件的小型化。

與600V~900V的Si-MOSFET相比,SiC-MOSFET的優勢在于芯片面積?。蓪崿F小型封裝),而且體二極管的恢復損耗非常小。

主要應用于工業機器電源、高效率功率調節器的逆變器轉換器。

daed385bb1144c2c97aba33bb9f1339a~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=Lq6JC5DS12umyit1Pxo4ZrOfOTA%3D

2. 標準化導通電阻

SiC的絕緣擊穿場強是Si的10倍,所以能夠以低阻抗、薄厚度的漂移層實現高耐壓。

因此,在相同的耐壓值情況下,SiC可以得到標準化導通電阻(單位面積導通電阻)更低的器件。

例如900V時,SiC-MOSFET的芯片尺寸只需要Si-MOSFET的35分之1、SJ-MOSFET的10分之1,就可以實現相同的導通電阻。

不僅能夠以小封裝實現低導通電阻,而且能夠使門極電荷量Qg、結電容也變小。

SJ-MOSFET只有900V的產品,但是SiC卻能夠以很低的導通電阻輕松實現1700V以上的耐壓。

因此,沒有必要再采用IGBT這種雙極型器件結構(導通電阻變低,則開關速度變慢),就可以實現低導通電阻、高耐壓、快速開關等各優點兼備的器件。

d7e4e26674074bdcbfc7ddff8c64780a~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=xaj2%2FAZMIA6K%2Bo9f%2B7bUxeVmMpU%3D

3. VD - ID特性

SiC-MOSFET與IGBT不同,不存在開啟電壓,所以從小電流到大電流的寬電流范圍內都能夠實現低導通損耗。

而Si-MOSFET在150°C時導通電阻上升為室溫條件下的2倍以上,與Si-MOSFET不同,SiC-MOSFET的上升率比較低,因此易于熱設計,且高溫下的導通電阻也很低。

598db529558a4933ac90644bbf1367ad~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=vbdht4NEvYC9XXi3Vquvb7BJ5HA%3D

※該數據是ROHM在相同條件下測試的結果,僅供參考。此處表示的特性本文不做任何保證。

4. 驅動門極電壓和導通電阻

SiC-MOSFET的漂移層阻抗比Si-MOSFET低,但是另一方面,按照現在的技術水平,SiC-MOSFET的MOS溝道部分的遷移率比較低,所以溝道部的阻抗比Si器件要高。

因此,越高的門極電壓,可以得到越低的導通電阻(VCS=20V以上則逐漸飽和)。

如果使用一般IGBT和Si-MOSFET使用的驅動電壓VGS=10~15V不能發揮出SiC本來的低導通電阻的性能,所以為了得到充分的低導通電阻,推薦使用VGS=18V左右進行驅動。

6861e45b33ac4420a2b129394b38a7d3~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=F%2BQT0KUj1Y%2FuVqYUn2gye8a40iw%3D

三、SiC SBD詳解

1. 器件結構和特征

SiC能夠以高頻器件結構的SBD(肖特基勢壘二極管)結構得到600V以上的高耐壓二極管(Si的SBD最高耐壓為200V左右)。

因此,如果SiC-SBD替換現在主流產品快速PN結二極管(FRD:快速恢復二極管),能夠明顯減少恢復損耗。

有利于電源的高效率化,并且通過高頻驅動實現電感等無源器件的小型化,而且可以降噪。廣泛應用于空調、電源、光伏發電系統中的功率調節器、電動汽車的快速充電器等的功率因數校正電路(PFC電路)和整流橋電路中。

aa34325094c945a5b18b7d6583765c4d~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=wA2cC4hGvf9UYTi2ckJXAyqbB6U%3D

2. SiC-SBD的正向特性

SiC-SBD的開啟電壓與Si-FRD相同,小于1V。

開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度設計得低,開啟電壓也可以做得低一些,但是這也將導致反向偏壓時的漏電流增大。

ROHM的第二代SBD通過改進制造工藝,成功地使漏電流和恢復性能保持與舊產品相等,而開啟電壓降低了約0.15V。

d0de028acc0c484c87d042cae7853326~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=0UOHaclgv172xpbbSEFyUQ9Oj58%3D

3. SiC-SBD的恢復特性

Si的快速PN結二極管(FRD:快速恢復二極管)在從正向切換到反向的瞬間會產生極大的瞬態電流,在此期間轉移為反向偏壓狀態,從而產生很大的損耗。

這是因為正向通電時積聚在漂移層內的少數載流子不斷地進行電傳導直到消亡(該時間也稱為積聚時間)。

正向電流越大,或者溫度越高,恢復時間和恢復電流就越大,從而損耗也越大。

與此相反,SiC-SBD是不使用少數載流子進行電傳導的多數載流子器件(單極性器件),因此原理上不會發生少數載流子積聚的現象。由于只產生使結電容放電程度的小電流,所以與Si-FRD相比,能夠明顯地減少損耗。而且,該瞬態電流基本上不隨溫度和正向電流而變化,所以不管何種環境下,都能夠穩定地實現快速恢復。

另外,還可以降低由恢復電流引起的噪音,達到降噪的效果。

c3944f3161a94dea853a3e3fb55a3e72~tplv-tt-origin-asy2:5aS05p2hQOWFg-WZqOS7tuS7o-eQhuWVhui0nuWFieenkeaKgA==.image?_iz=58558&from=article.pc_detail&x-expires=1693214059&x-signature=cPT8%2FRtCGhFc%2FPDxOc%2B%2BfzSSppA%3D

來源:ROHM

注:文中觀點僅供分享交流,不代表貞光科技立場,如涉及版權等問題,請您告知,我們將及時處理!

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 半導體
    +關注

    關注

    328

    文章

    24867

    瀏覽量

    203794
  • 材料
    +關注

    關注

    3

    文章

    1061

    瀏覽量

    26896
  • 功率器件
    +關注

    關注

    40

    文章

    1558

    瀏覽量

    89609
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2473

    瀏覽量

    61550
收藏 人收藏

    評論

    相關推薦

    功率電子器件從硅(Si)到碳化硅(SiC)的過渡

    硅基MOSFET、碳化硅(SiC)MOSFET、氮化鎵(GaN)HEMT或碳化硅(SiC)FET等功率電子器件是用于眾多市場領域的主要技術構件。長期以來,硅一直是
    的頭像 發表于 04-28 10:18 ?93次閱讀
    <b class='flag-5'>功率</b>電子<b class='flag-5'>器件</b>從硅(Si)到碳化硅(<b class='flag-5'>SiC</b>)的過渡

    功率器件 Spice 模型建立

    社區有關于器件 SPICE model建模的嗎,如LDMOS、VDMOS、IGBT、SiC功率器件spice model?可以相互討論下,
    發表于 04-12 22:37

    全面的SiC功率器件行業概覽

    SiC功率器件市場正處于快速增長階段,特別是在汽車電動化趨勢的推動下,其市場規模預計將持續擴大。 根據Yole Group的報告,汽車行業對SiC
    發表于 04-07 11:20 ?103次閱讀
    全面的<b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>行業概覽

    碳化硅(SiC功率器件核心優勢及技術挑戰

    SiC器件的核心優勢在于其寬禁帶、高熱導率、以及高擊穿電壓。具體來說,SiC的禁帶寬度是硅的近3倍,這意味著在高溫下仍可保持良好的電性能;其熱導率是硅的3倍以上,有利于高功率應用中的熱
    發表于 03-08 10:27 ?178次閱讀
    碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>功率</b><b class='flag-5'>器件</b>核心優勢及技術挑戰

    一文解析SiC功率器件互連技術

    和硅器件相比,SiC器件有著耐高溫、擊穿電壓 大、開關頻率高等諸多優點,因而適用于更高工作頻 率的功率器件。但這些優點同時也給
    發表于 03-07 14:28 ?306次閱讀
    一文解析<b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>互連技術

    碳化硅(SiC功率器件在新能源汽車中的深入應用解析

    采用多芯片并聯的SiC功率模塊,會產生較嚴重的電磁干擾和額外損耗,無法發揮SiC器件的優良性能;SiC
    發表于 03-04 10:35 ?532次閱讀
    碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>功率</b><b class='flag-5'>器件</b>在新能源汽車中的深入應用解析

    同是功率器件,為什么SiC主要是MOSFET,GaN卻是HEMT

    電子發燒友網報道(文/梁浩斌)在我們談論第三代半導體的時候,常說的碳化硅功率器件一般是指代SiC MOSFET(金屬-氧化物半導體場效應晶體管),而氮化鎵功率
    的頭像 發表于 12-27 09:11 ?1684次閱讀

    產業鏈垂直整合如何為SiC功率器件工廠賦能?

    由于其寬帶隙和優異的材料特性, SiC功率電子器件現在正成為許多殺手級應用的后起之秀,例如汽車、光伏、快速充電、PFC等。
    的頭像 發表于 12-08 14:33 ?591次閱讀

    車規級功率模塊封裝的現狀,SiC MOSFET對器件封裝的技術需求

    1、SiC MOSFET對器件封裝的技術需求 2、車規級功率模塊封裝的現狀 3、英飛凌最新SiC HPD G2和SSC封裝 4、未來模塊封裝發展趨勢及看法
    發表于 10-27 11:00 ?644次閱讀
    車規級<b class='flag-5'>功率</b>模塊封裝的現狀,<b class='flag-5'>SiC</b> MOSFET對<b class='flag-5'>器件</b>封裝的技術需求

    三菱電機將投資Coherent的SiC業務 發展SiC功率器件業務

    三菱電機將投資Coherent的新SiC業務; 旨在通過與Coherent的縱向合作來發展SiC功率器件業務。 三菱電機集團近日(2023年10月10日)宣布已與Coherent達成協
    的頭像 發表于 10-18 19:17 ?420次閱讀

    SiC功率器件的優勢和應用前景

    航天器的重要組成部分——供配電系統和二次電源的發展面臨兩方面的挑戰,一方面是小型化和輕量化,另一方面是大功率和超大功率航天器的需求。在超大功率方面,目前硅基功率
    發表于 10-18 10:34 ?534次閱讀
    <b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的優勢和應用前景

    英飛凌如何控制基于SiC功率半導體器件的可靠性呢?

    英飛凌如何控制和保證基于 SiC功率半導體器件的可靠性
    的頭像 發表于 10-11 09:35 ?821次閱讀
    英飛凌如何控制基于<b class='flag-5'>SiC</b><b class='flag-5'>功率</b>半導體<b class='flag-5'>器件</b>的可靠性呢?

    長電科技高可靠性車載SiC功率器件封裝設計

    長電科技在功率器件封裝領域積累了數十年的技術經驗,具備全面的功率產品封裝外形,覆蓋IGBT、SiC、GaN等熱門產品的封裝和測試。
    發表于 10-07 17:41 ?455次閱讀

    羅姆與緯湃科技簽署SiC功率器件長期供貨合作協議

    SiC(碳化硅)功率器件領域的先進企業ROHM Co., Ltd. (以下簡稱“羅姆”)于2023年6月19日與全球先進驅動技術和電動化解決方案大型制造商緯湃科技(以下簡稱“Vitesco”)簽署
    發表于 06-20 16:14 ?227次閱讀

    AEC-Q101|SiC功率器件高溫反偏

    SiC(碳化硅)功率器件以其耐高溫、耐高壓、低開關損耗等特性,能有效實現電力電子系統的高效率、小型化、輕量化、高功率密度等要求,受到了新能源汽車、光伏發電、軌道交通、智能電網等領域的追
    的頭像 發表于 06-09 15:20 ?594次閱讀
    AEC-Q101|<b class='flag-5'>SiC</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>高溫反偏
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>