<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

不要過于關注3D NAND閃存層數

旺材芯片 ? 來源:旺材芯片 ? 作者:旺材芯片 ? 2020-12-09 10:35 ? 次閱讀

NAND非易失性閃存存儲器作為存儲行業的突破性革新已有多年發展歷史,隨著2D NAND容量達到極限,以及晶體管越來越小,NAND的編程時間變長,擦寫次數變少,能夠將內存顆粒堆疊起來的3D NAND應運而生,可以支持在更小的空間內容納更高的存儲容量,在需要存儲海量數據的時代有著重大價值。

依托于先進工藝的3D NAND,氧化層越來越薄,面臨可靠性和穩定性的難題,未來的3D NAND將如何發展?如何正確判斷一款3D NAND的總體效率? 在2020年的閃存峰會上,TechInsights高級技術研究員Joengdong Choe發表了相關演講,詳細介紹了3D NAND和其他新興存儲器的未來。TechInsights是一家對包括閃存在內的半導體產品分析公司。 3D NAND路線圖:三星最早入局,長江存儲跨級追趕—Choe介紹了2014-2023年的世界領先存儲公司的閃存路線圖,包括三星、鎧俠(原東芝存儲)、英特爾、美光、SK 海力士和長江存儲等公司的3D NAND技術發展路線。

Choe給出的路線圖顯示,三星電子最早在3D NAND開拓疆土,2013年8月初就宣布量產世界首款3D NAND,并于2015年推出32層的 3D NAND,需要注意的是,三星將該技術稱之為V-NAND而不是3D NAND。 之后,三星陸續推出48層、64層、92層的V-NAND,今年又推出了 128層的產品。 SK 海力士稍晚于三星,于2014年推出3D NAND產品,并在2015年推出了36層的3D NAND,后續按照48層、72層/76層、96層的順序發展,同樣在今年推出128層的3D NAND閃存。 美光和英特爾這一領域是合作的關系,兩者在2006年合資成立了Intel-Micron Flash Technologies(IMFT)公司,并聯合開發NAND Flash和3D Xpoint。

不過,兩者在合作十多年之后漸行漸遠,IMFT于2019年1月15日被美光以15億美元收購,之后英特爾也建立起了自己的NAND Flash和3D Xpoint存儲器研發團隊。 另外,在路線圖中,長江存儲于2018年末推出了32層的3D NAND,2020年推出了64層的3D NAND。從路線圖中可以發現,從90多層跨越到100多層時,時間周期會更長。相較于其他公司,國內公司3D NAND起步較晚,直到2017年底,才有長江存儲推出國產首個真正意義上的32層3D NAND閃存。不過長江存儲發展速度較快,基于自己的Xtacking架構直接從64層跨越到128層,今年4月宣布推出128層堆棧的3D NAND閃存,從閃存層數上看,已經進入第一梯隊。

近期,長江存儲CEO楊士寧也在2020北京微電子國際研討會暨IC World學術會議上公開表示,長江存儲用3年的時間走過國際廠商6年的路,目前的技術處于全球一流水準,下一步是解決產能的問題。值得一提的是,在中國閃存市場日前公布的Q3季度全球閃存最新報告中,三星、鎧俠、西部數據、SK 海力士、美光、英特爾六大閃存原廠占據了全球98.4%的市場份額,在剩下的1.6%的市場中,長江存儲Q3季度的收入預計超過1%,位列全球第七。 層數并未唯一的判斷標準—盡管在各大廠商的閃存技術比拼中,閃存層數的數量是最直接的評判標準之一。

不過,Choe指出,大眾傾向于將注意力集中在閃存層數上可能是一種誤導,因為字線(帶有存儲單元的活動層)的實際數量會有很大的不同,例如可以將其他層作為偽字線,以幫助緩解由較高層數引起的問題。 Choe表示,判斷3D NAND工作效率的一種標準是用分層字線的總數除以總層數,依據這一標準,三星的擁有最優秀的設計,不過三星也沒有使用多個層或堆棧,不像其他廠商當前的閃存那樣使用“串堆?!?。

一種提高3D NAND總體效率的方法是將CMOS或控制電路(通常稱為旁路電路)放置在閃存層下面。這一方法有許多名稱,例如CuA(CMOS-under-Array)、PUC (Periphery-Under-Cell), 或者 COP (Cell-On-Periphery)。 長江存儲的設計有些特別,因為它有一些電路在閃存的頂部,而CMOS在連接到閃存之前,是在更大的工藝節點中制造的。

Choe認為這種技術有潛力,但目前存在產量問題。 另外,各個公司使用工藝也不盡相同,比較典型的就是電荷擷取閃存技術(Charge trap flash,簡稱CTF)和傳統浮柵存儲器技術(Floating gate,簡稱FG)。 CTF使用氮化硅來存儲電子,而不是傳統FG中典型的摻雜多晶硅。具體而言,FG將電子存儲在柵極中,瑕疵會導致柵極和溝道之間形成短路,消耗柵極中的電荷,即每寫入一次數據,柵極電荷就會被消耗一次,當柵極電荷被消耗完時,該閃存就無法再存儲數據。而CTF的電荷是存儲在絕緣層之上,絕緣體環繞溝道,控制柵極環繞絕緣體層,理論而言寫入數據時,電荷未被消耗,可靠性更強。

Choe指出在當前的存儲芯片公司中,英特爾和美光一直使用的是傳統的浮柵級技術,而其他制造商則依靠電荷擷取閃存設計。美光直到最近發布176層才更換新的技術,英特爾的QLC在使用浮柵技術的情況下,可以保持更好的磨損性能,但這也會影響其閃存的耐用性、可靠性、可擴展性以及其他性能優勢。 下一個十年將指向500層—Choe在演講中提到,鎧俠未來將用到的分離柵結構或分離單元結構技術也很有趣,它可以使存儲器的密度直接增加一倍,并且由于分離單元結構的半圓形形狀而擁有特別堅固的浮柵結構,具有更強的耐用性。

Choe預計,隨著平臺或堆棧數量的增加(目前最多為兩個),閃存層數將繼續增加,每個閃存芯片的存儲量也會相應增加。Choe認為,這與其他技術,例如,硅通孔(TSV),疊層封裝(PoP / PoPoP)以及向5LC / PLC的遷移一樣,都在下一個十年指向500層以上和3 TB裸片。另外,Choe詳細說明了閃存的成本是按照每GB多少美分來計算的,這意味著未來3D閃存的架構將越來越便宜,不過2D閃存的價格依然昂貴,甚至比3D閃存貴很多倍。

談到尖端閃存技術的推進,Choe認為尖端閃存總是首先進入移動和嵌入式產品,例如5G手機是當下的主要驅動力。他還指出,2D平面閃存仍然有一些應用市場,通常將其視為低延遲SLC用作3D XPiont的存儲類內存(SCM)的替代品,如Optane或美光最近發布的X100,盡管X100在消費市場并不常見。 目前,100層以上的3D閃存產品,目前已經發布了SK 海力士128L Gold P31和三星128L 980 PRO,美光最近也基于176L flash發布了Phison E18的硬盤原型。另外,西部數據和鎧俠的BiCS5和英特爾的144層產品將在明年發布。 更好的控制器需要更高密度的閃存,未來幾年閃存將向更快和更大容量的方向發展。 本文編譯自:https://www.tomshardware.com/news/techinsights-outlines-the-future-of-3d-nand-flash

責任編輯:xj

原文標題:聚焦 | 過于關注3D NAND閃存層數可能是一種誤導

文章出處:【微信公眾號:旺材芯片】歡迎添加關注!文章轉載請注明出處。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 閃存
    +關注

    關注

    16

    文章

    1697

    瀏覽量

    114287
  • 儲存
    +關注

    關注

    3

    文章

    185

    瀏覽量

    22293
  • 3d nand
    +關注

    關注

    4

    文章

    92

    瀏覽量

    29016

原文標題:聚焦 | 過于關注3D NAND閃存層數可能是一種誤導

文章出處:【微信號:wc_ysj,微信公眾號:旺材芯片】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    3D NAND閃存來到290層,400層+不遠了

    電子發燒友網報道(文/黃晶晶)早在2022年閃存芯片廠商紛紛發布200+層 3D NAND,并從TLC到QLC得以廣泛應用于消費電子、工業、數據中心等領域。來到2024年5月目前三星
    的頭像 發表于 05-25 00:55 ?774次閱讀
    <b class='flag-5'>3D</b> <b class='flag-5'>NAND</b><b class='flag-5'>閃存</b>來到290層,400層+不遠了

    SK海力士尋求東電低溫蝕刻設備,或降低NAND閃存堆棧層數

    當前,3D NAND閃存在通過提高堆棧層數來增加容量上取得顯著進展。然而,在這種趨勢下,閃存顆粒中的垂直通道蝕刻變得愈發困難且速率減緩。
    的頭像 發表于 05-07 10:33 ?252次閱讀

    三星量產第九代V-NAND閃存芯片,突破最高堆疊層數紀錄

    三星公司預計將于今年四月份大批量生產目前行業內為止密度最大的290層第九代V-NAND3D NAND閃存芯片,這是繼之前的236層第八代V-
    的頭像 發表于 04-18 09:49 ?206次閱讀

    三星即將量產290層V-NAND閃存

    據韓國業界消息,三星最早將于本月開始量產當前業界密度最高的290層第九代V-NAND3D NAND閃存芯片。
    的頭像 發表于 04-17 15:06 ?277次閱讀

    三星九代V-NAND閃存或月底量產,堆疊層數將達290層

    據韓媒Hankyung透露,第九代V-NAND閃存的堆疊層數將高達290層,但IT之家此前曾報道過,三星在學術會議上展示了280層堆疊的QLC閃存,其IO接口速度可達3.2GB/s。
    的頭像 發表于 04-12 16:05 ?540次閱讀

    鎧俠計劃2030-2031年推出千層級3D NAND閃存,并開發存儲級內存(SCM)

    目前,鎧俠和西部數據共同研發NAND閃存技術,他們最杰出的作品便是218層堆疊的BICS8 3D閃存,這項產品能達到的傳輸速度高達3200MT/s。
    的頭像 發表于 04-07 15:21 ?289次閱讀

    3D動畫原理:電阻

    電阻3D
    深圳崧皓電子
    發布于 :2024年03月19日 06:49:19

    東京電子3D NAND蝕刻新技術或挑戰泛林市場領導地位

    據悉,東京電子新技術的目標是能夠長時間儲存數據的3d nand閃存。該公司開發了一種新的通道孔蝕刻方法,該方法是將垂直孔快速深插入存儲單元。3D n
    的頭像 發表于 10-16 14:39 ?440次閱讀

    三星24年生產第9代V-NAND閃存 SK海力士25年量產三層堆棧架構321層NAND閃存

    三星24年生產第9代V-NAND閃存 SK海力士25年量產三層堆棧架構321層NAND閃存 存儲領域的競爭愈加激烈,三星電子計劃在2023年正式生產第9代V-
    發表于 08-21 18:30 ?330次閱讀

    基于232層3D TLC NAND閃存的美光UFS 4.0模塊能效提升25%

    基于232層3D TLC NAND閃存的美光UFS 4.0模塊能效提升25% 此前美光推出了其首個UFS 4.0移動存儲解決方案,采用了232層3D TLC
    發表于 07-19 19:02 ?916次閱讀

    NAND閃存加速度,推動Multi-Die驗證新范式

    NAND閃存,所有主要閃存制造商都在積極采用各種方法來降低閃存的每位成本,同時創造出適用于各種應用的產品。閃存制造商還在積極展開研究,期望
    的頭像 發表于 07-18 17:55 ?537次閱讀
    <b class='flag-5'>NAND</b><b class='flag-5'>閃存</b>加速度,推動Multi-Die驗證新范式

    三星:2030年3D NAND將進入1000層以上

     三星已經確定了新一代3D NAND閃存的開發計劃,預計在2024年推出第九代3D NAND,其層數
    的頭像 發表于 07-04 17:03 ?1899次閱讀

    開放NAND閃存接口ONFI介紹

    本文轉自公眾號,歡迎關注 開放NAND閃存接口ONFI介紹 (qq.com) 一.前言 ? ONFI即 Open NAND Flash Interface, 開放
    的頭像 發表于 06-21 17:36 ?7353次閱讀
    開放<b class='flag-5'>NAND</b><b class='flag-5'>閃存</b>接口ONFI介紹

    淺談400層以上堆疊的3D NAND的技術

    3D NAND閃存是一種把內存顆粒堆疊在一起解決2D或平面NAND閃存限制的技術。這種技術垂直堆疊了多
    發表于 06-15 09:37 ?1855次閱讀
    淺談400層以上堆疊的<b class='flag-5'>3D</b> <b class='flag-5'>NAND</b>的技術
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>