<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

DeepMind最新研究通過函數正則化解決災難性遺忘

DPVg_AI_era ? 來源:lq ? 2019-06-29 07:53 ? 次閱讀

當遇到序列任務時,神經網絡會遭受災難性遺忘。DeepMind研究人員通過在函數空間中引入貝葉斯推理,使用誘導點稀疏GP方法和優化排練數據點來克服這個問題。今天和大家分享這篇Reddit高贊論文。

這篇由DeepMind研究團隊出品的論文名字叫“Functional Regularisation for Continual Learning”(持續學習的功能正規化)。研究人員引入了一個基于函數空間貝葉斯推理的持續學習框架,而不是深度神經網絡的參數。該方法被稱為用于持續學習的函數正則化,通過在底層任務特定功能上構造和記憶一個近似的后驗信念,避免忘記先前的任務。

為了實現這一點,他們依賴于通過將神經網絡的最后一層的權重視為隨機和高斯分布而獲得的高斯過程。然后,訓練算法依次遇到任務,并利用誘導點稀疏高斯過程方法構造任務特定函數的后驗信念。在每個步驟中,首先學習新任務,然后構建總結(summary),其包括(i)引入輸入和(ii)在這些輸入處的函數值上的后驗分布。然后,這個總結通過Kullback-Leibler正則化術語規范學習未來任務,從而避免了對早期任務的災難性遺忘。他們在分類數據集中演示了自己的算法,例如Split-MNIST,Permuted-MNIST和Omniglot。

通過函數正則化解決災難性遺忘

近年來,人們對持續學習(也稱為終身學習)的興趣再度興起,這是指以在線方式從可能與不斷增加的任務相關的數據中學習的系統。持續學習系統必須適應所有早期任務的良好表現,而無需對以前的數據進行大量的重新訓練。

持續學習的兩個主要挑戰是:

(i)避免災難性遺忘,比如記住如何解決早期任務;

(ii)任務數量的可擴展性。

其他可能的設計包括向前和向后轉移,比如更快地學習后面的任務和回顧性地改進前面的任務。值得注意的是,持續學習與元學習(meta-learning)或多任務學習有很大的不同。在后一種方法中,所有任務都是同時學習的,例如,訓練是通過對小批量任務進行二次抽樣,這意味著沒有遺忘的風險。

與許多最近關于持續學習的著作相似,他們關注的是理想化的情況,即一系列有監督的學習任務,具有已知的任務邊界,呈現給一個深度神經網絡的持續學習系統。一個主要的挑戰是有效地規范化學習,使深度神經網絡避免災難性的遺忘,即避免導致早期任務的預測性能差的網絡參數配置。在不同的技術中,他們考慮了兩種不同的方法來管理災難性遺忘。

一方面,這些方法限制或規范網絡的參數,使其與以前的任務中學習的參數沒有明顯的偏差。 這包括將持續學習構建為順序近似貝葉斯推理的方法,包括EWC和VCL。這種方法由于表征漂移(representation drift)而具有脆弱性(brittleness)。也就是說,隨著參數適應新任務,其他參數被約束/正規化的值變得過時。

另一方面,他們有預演/回放緩沖方法,它使用過去觀察的記憶存儲來記住以前的任務。它們不會受到脆弱性的影響,但是它們不表示未知函數的不確定性(它們只存儲輸入-輸出),并且如果任務復雜且需要許多觀察來正確地表示,那么它們的可擴展性會降低。優化存儲在重放緩沖區中的最佳觀察結果也是一個未解決的問題。

在論文中,研究人員發展了一種新的持續學習方法,解決了這兩個類別的缺點。它是基于近似貝葉斯推理,但基于函數空間而不是神經網絡參數,因此不存在上述的脆弱性。這種方法通過記住對底層特定任務功能的近似后驗信念,避免忘記先前的任務。

為了實現這一點,他們考慮了高斯過程(GPs),并利用誘導點稀疏GP方法總結了使用少量誘導點的函數的后驗分布。這些誘導點及其后驗分布通過變分推理框架內的KullbackLeibler正則化項,來規范未來任務的持續學習,避免了對早期任務的災難性遺忘。因此,他們的方法與基于重播的方法相似,但有兩個重要的優勢。

首先,誘導點的近似后驗分布捕獲了未知函數的不確定性,并總結了給定所有觀測值的全后驗分布。其次,誘導點可以使用來自GP文獻的專門標準進行優化,實現比隨機選擇觀測更好的性能。

為了使他們的函數正則化方法能夠處理高維和復雜的數據集,他們使用具有神經網絡參數化特征的線性核。這樣的GPs可以理解為貝葉斯神經網絡,其中只有最后一層的權重以貝葉斯方式處理,而早期層的權重是優化的。這種觀點允許在權重空間中進行更有效和準確的計算訓練程序,然后將近似轉換為函數空間,在函數空間中構造誘導點,然后用于規范未來任務的學習。他們在分類中展示了自己的方法,并證明它在Permuted-MNIST,Split-MNIST和Omniglot上具有最先進的性能。

實驗簡介

研究人員考慮了三個持續學習分類問題中的實驗:Split-MNIST,PermutedMNIST和Sequenn Omniglot。他們比較了其方法的兩種變體,稱為功能正則化持續學習(FRCL)。

表1:Permuted-MNIST和Split-MNIST的結果。對于在這項工作中進行的實驗,他們顯示了10次隨機重復的平均值和標準差。在適用的情況下,他們還會在括號中報告每個任務的誘導點/重放緩沖區大小的數量。

表2:Sequential Omniglo的結果。所示為超過5個隨機任務排列的平均值和標準偏差。請注意,由于不現實的假設,“每個任務的單一模型”和“漸進網絡”方法不能直接比較。他們將其包括在內,因為它們為其余的持續學習方法提供了性能的上限。

他們將自己的方法與文獻中的其他方法進行比較,引用公布的結果,并使用與簡單的重放-緩沖方法相對應的附加基線(BASELINE)進行持續學習。對于所有實現的方法,即FRCL-RND,FRCL-TR和BASELINE,他們不在共享特征向量參數θ上放置任何額外的正則化器(例如“2懲罰”或批量規范化等)。

鑒于Permuted-MNIST和Omniglot是多類分類問題,其中每個第k個任務涉及對Ck類的分類,他們需要推廣模型和變分方法來處理每個任務的多個GP函數。正如他們在補充中詳述的那樣,這樣做很簡單。FRCL方法已使用GPflow實現。

圖1:左欄中的面板顯示隨機誘導點(BASELINE&FRCL-RND;見頂部圖像)和相應的最終/優化誘導點(FRCL-TR);請參閱Permuted-MNIST基準測試的第一項任務。誘導點的數量限制為10個,每行對應于不同的運行。右欄中的面板提供隨機誘導點的tsne可視化,最終/優化的那些將一起顯示所有剩余的訓練輸入。為了獲得這種可視化,他們將tsne應用于訓練輸入的完整神經網絡特征向量矩陣ΦX1。

討論與未來研究

研究人員引入了一種用于監督連續學習的函數正則化方法,該方法將誘導點GP推理與深度神經網絡相結合。該方法構造特定于任務的后驗信念或總結,包括對函數值的誘導輸入和分布,這些函數值捕獲了與任務相關的未知函數的不確定性。隨后,任務特定的總結使他們能夠規范持續學習并避免災難性的遺忘。

關于使用GPs進行在線學習的相關工作,請注意先前的算法是以在線方式學習單個任務,其中來自該任務的數據依次到達。相比之下,論文提出了一種處理一系列不同任務的連續學習方法。

未來研究的方向是強制執行固定的內存緩沖區,在這種情況下,需要將所有先前看到的任務的總結壓縮為單個總結。最后,在論文中,他們將該方法應用于具有已知任務邊界的監督分類任務,將其擴展到處理未知任務邊界,并考慮在其他領域的應用,如強化學習。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4590

    瀏覽量

    99200
  • 函數
    +關注

    關注

    3

    文章

    4114

    瀏覽量

    61426
  • DeepMind
    +關注

    關注

    0

    文章

    128

    瀏覽量

    10723

原文標題:Reddit熱議!DeepMind最新研究解決災難性遺忘難題

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    *** 災難性故障,求救,經驗分享

    我用***不久,出現 災難性故障的次數很多(操作失?。?,有人說是盜版,有人說是誤操作,有人說是電腦內存小。請問有沒有人出現過同樣的問題,又有如何的應對方法,分享一下你的經驗,250元的考證,要是出現了這個問題,學子們又得浪費父母的250RMB了,跪求解決!
    發表于 05-03 14:36

    ***災難性故障

    打開不了,顯示出Exception EOleException in moudle ***.exe at0036E780.災難性故障
    發表于 10-15 12:10

    有沒人在使用AD過程中出現災難性故障啊,怎么解決的?

    有沒人在使用AD過程中出現災難性故障啊,怎么解決的。我最近使用的AD軟件總是出現
    發表于 11-20 09:11

    未來的AI 深挖谷歌 DeepMind 和它背后的技術

    的機器學習非常感興趣,但它對使用這些技術的安全也有客觀的看法。為了避免機器災難,DeepMind開發了一個開源測試平臺,以確定在存在不良行為時,算法是否具有終止開關。這個開源測試平臺稱為
    發表于 08-26 12:04

    如何創建正則的表達式?

    正則表達式:用于匹配規律規則的表達式,正則表達式最初是科學家對人類神經系統的工作原理的早期研究,現在在編程語言中有廣泛的應用,經常用于表單校驗,高級搜索等。
    發表于 10-27 15:49

    AD畫圖出現“災難性故障 (異常來自 HRESULT:0x8000FFFF (E_UNEXPECTED))”

    在AD畫原理圖中將原理圖庫中的元件拖入原理圖時出現“災難性故障 (異常來自 HRESULT:0x8000FFFF (E_UNEXPECTED))”
    發表于 01-22 17:11

    PCB災難性故障

    未知情況,我把所有封裝都選好了往PCB導的時候出現的這個問題,不知道為什么
    發表于 03-10 15:31

    隨機正則(k,r)-SAT問題的可滿足臨界

    研究k-SAT問題實例中每個變元恰好出現r=2s次,且每個變元對應的正、負文字都出現s次的嚴格隨機正則(K,r)-SAT問題.通過構造一個特殊的獨立隨機實驗,結合一階矩方法,給出了嚴格隨機正則
    發表于 01-05 15:30 ?0次下載

    DeepMind破解災難性遺忘密碼,讓AI更像人

    這是一個大問題。因為,先進的算法可以說是在分析了無數的例子之后才學會被要求做的事情。例如,一個面部識別AI系統需要分析成千上萬張人臉的圖片,這些圖片很可能是人工標注過的,這樣它才能在人臉出現在視頻流中的時候檢測到。
    的頭像 發表于 09-02 09:04 ?3204次閱讀

    DeepMind徹底解決人工智能災難性遺忘問題

    人工智能系統在設計上就傾向于在每次開始新的學習之前,忘記先前學到的所有東西,這被稱為災難性遺忘。
    的頭像 發表于 09-03 11:11 ?3158次閱讀

    Batch的大小、災難性遺忘將如何影響學習速率

    災難性遺忘(Catastrophic Forgetting)”,這也是在較小batch中限制學習率的原因。
    的頭像 發表于 11-14 08:58 ?3247次閱讀

    實現人工智能戰略性遺忘的三個方法

    神經網絡的邏輯與此不同,如果一個神經網絡被訓練學習英語,那么其會通過調用參數解決英語問題。如果你想教它學習西班牙語,那么神經網絡對于西班牙語的認知就會覆蓋掉之前為英語學習所儲備的知識,有效清空所有內容并從零開始。我們將其稱為“災難性遺忘
    的頭像 發表于 03-05 17:44 ?3327次閱讀

    詳解機器學習和深度學習常見的正則

    說到正則化大家應該都不陌生,這個在機器學習和深度學習中都是非常常見的,常用的正則化有L1正則化和L2正則化。提到正則化大家就會想到是它會將權
    的頭像 發表于 01-29 17:52 ?2034次閱讀
    詳解機器學習和深度學習常見的<b class='flag-5'>正則</b>化

    基于AdaBoost框架的彈性正則化多核學習算法

    正則化多核學習中,稀疏的核函數權值會導致有用信息丟失和泛化性能退化,而通過非稀疏模型選取所有核函數則會產生較多的冗余信息并對噪聲敏感。針對上述問題,基于 Adaboost框架提出一種
    發表于 06-03 11:37 ?1次下載

    基于先驗指導的對抗樣本初始化方法提升FAT效果

    這種現象最先由Wong等人發現,隨后他們又發現使用FGSM生成對抗樣本時使用隨機初始化可以延緩災難性遺忘發生的時間,但是隨著訓練的進行,災難性遺忘還是無法避免。
    的頭像 發表于 12-19 09:42 ?508次閱讀
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>