<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一種單神經元模糊PID控制方法

SwM2_ChinaAET ? 來源:未知 ? 作者:李倩 ? 2018-05-09 09:21 ? 次閱讀

摘要:針對傳統PID控制方法對雙轉子永磁同步電機進行控制時參數攝動、抗干擾能力差等缺點,提出一種單神經元模糊PID控制方法。首先建立雙轉子永磁同步電機的數學模型,設計了單神經元模糊PID控制器,然后利用MATLAB實現了系統設計與仿真。最后通過傳統PID和單神經元模糊PID控制的仿真結果進行對比分析,仿真結果表明,單神經元模糊PID控制可以顯著提高系統的魯棒性,使雙轉子永磁同步電機控制系統具有更好的動、靜態性能和抗干擾能力。

0引言

在水下航行器行進過程中,為了保持自身姿態平穩,一般采用兩臺常規電機或者單臺常規電機加復雜的行星減速器傳動系統拖動雙螺旋漿旋轉。前者傳動系統成本高,后者結構復雜,易出故障且機械傳動效率較低[1]。

風力發電中采用永磁電機,但風力發電受天氣影響較大,風速須達到特定的范圍所得電壓才可使用,風速過小或過大所得電壓都無法并入電網,從而使得由永磁電機所設計的風力發電機所產生的可用電壓范圍較窄[2]。

雙轉子永磁同步電機采用內外轉子、中間定子結構,其可靠性高,定子鐵心利用率高,系統運行效率高[3]。電機剖面圖如圖1所示。航行過程中自身即可抵消陀螺效應,可直接驅動對轉螺旋推進系統。在風力發電領域可以拓寬可用電壓范圍。由于雙轉子永磁同步電機(DRPMSM)的上述諸多優點,使得它越來越受到專家學者的關注。

雙轉子永磁同步電機為典型的非線性強耦合系統,實際運行過程中會因為干擾或復雜變化等原因,影響控制精度和系統的穩定性。中采用模糊控制對雙轉子電機進行控制,但是模糊控制對模糊規則選擇敏感,實時性無法保證;文獻[7]中采用單神經元PID控制方法,雖然可以優化電機啟動性能,但控制器增益無法實現自我調節;文獻[8]中采用滑模變結構對永磁同步電機進行控制,但滑模軌跡在進行反向切換時不能連續,且控制過程復雜。

基于以上問題,本文提出了單神經元模糊PID控制方法,在MATLAB環境下搭建了系統仿真模型,并對比了傳統PID控制與單神經元模糊PID控制的仿真結果。

1雙轉子永磁同步電機的數學模型

雙轉子永磁同步電機是一種新型電機,它與普通PMSM的差別在于原來靜止的定子也可以旋轉,所以兩者具有相同的電磁關系,在建立電機數學模型前,做如下理想化假設[9]:

(1)電機各相繞組結構對稱;

(2)電機具有正弦形反電動勢波形;

(3)忽略磁路飽和;

(4)忽略磁滯損耗。

參照普通永磁電機,可得雙轉子電機的數學模型[10],如下所示:

2控制器原理及系統設計

2.1

單神經元PID控制器原理

單神經元控制器基于人腦神經元的結構與特征,其模型如圖2所示。

圖2中r(k)為給定轉速信號,n(k)為實際反饋信號,u(k)為單神經元PID控制器輸出值,w1(k)、w2(k)、w3(k)是分別對應于x1(k)、x2(k)、x3(k)的加權系數。利用給定速度r(k)與實際輸出信號n(k)之間的誤差作為控制偏差:

再通過狀態轉換器轉化為神經元學習控制所需要的狀態量x1、x2、x3,從而可得:

采用上述學習規則系統可自動調節各輸入量的權重。將這種控制策略應用于雙轉子永磁同步電機,可提高控制系統的抗干擾能力,簡化算法的復雜度,可實現轉速控制器的平穩飽和。但是對神經元比例系數K值選取卻是人為設定的,且一旦選定,無法動態調節,選擇起來十分困難,K值過高,會使得系統超調過大,增加系統響應時間;過低則系統響應速度變慢,實時性得不到保障。

2.2

單神經元模糊PID控制器設計

由于單神經元PID控制中的神經元比例系數選取困難,本文在此基礎上設計了單神經元模糊PID控制器,其原理圖如圖3所示。

基于單神經元PID控制的缺點,本文通過模糊控制策略調整控制器增益,控制策略如圖4所示。

模糊PID控制系統性能取決于模糊控制規則的制定,本文在分析矢量控制轉速響應曲線的基礎上,制定了模糊控制規則[12]。

本文選取7個詞匯描述輸入輸出變量,即{NB,NM,NS,ZO,PS,PM,PB},采用三角隸屬度函數曲線作為輸入/輸出變量的隸屬函數,如圖5所示。它計算工作量少,靈敏度高。模糊推理采用Mamdani方法[13],反模糊化采用加權平均法??刂埔巹t表如表1所示。

3仿真結果及分析

基于MATLAB搭建了電機矢量控制和單神經元模糊PID控制兩種仿真控制模型,電機的各項參數如下所示:電機極對數為4,額定電壓為220 V,內外電樞電阻為1.437 5 Ω,永磁磁鏈均為0.175 Wb,粘性摩擦系數為0,電機轉子的dq軸等效電感為4.25×10-3mH。在MATLAB/Simulink設置界面設定仿真模型起始時間為0 s,停止時間為0.5 s,初始給定速度值為100 rad/s;在0.15 s時內外轉子給定轉速從初始的100 rad/s跳變為150 rad/s;在0.25 s時內外電機轉子力矩由1 N·m變為1.5 N·m。在此仿真基礎上,分析電機的輸出特性和響應速度。并且將實驗結果與傳統的矢量控制方法進行對比試驗,從而可以驗證本次所設計的雙轉子永磁同步電機數學模型的正確性和相應控制算法的控制效果。

圖6~圖8分別顯示了在傳統矢量控制下,雙轉子永磁同步電機在內外轉子轉速、力矩和三相電流的響應曲線。從仿真結果的波形分析中可以看到,傳統的矢量控制方法所得的內外電機的轉速響應曲線具有較大的超調量和較長時間的震蕩調整過程;對于電機的力矩,當轉速發生改變時,力矩變化明顯;而對于三相電流,在電機達到預定轉速和轉速發生改變時,三相電流變化幅度較大,電機在較長時間里方能達到設定值。

圖9~圖11是利用單神經元模糊PID控制方法所得的響應曲線圖,可以看到電機在較短時間里轉速達到了設定值100 rad/s,當電機到達穩定速度并持續一段時間以后,在0.15 s時將內外轉子速度從100 rad/s跳變為150 rad/s。從圖9可以看出,與矢量控制相比,當設定轉速發生改變時,內外轉子的轉速都快速地達到了給定的轉速,響應速度較快。同樣地,可以看到內外電機的力矩響應曲線,在較短時間里面內外轉子力矩達到了給定值,從圖10看出內外電機的電磁轉矩保持在給定值1 N·m的電磁轉矩不變。持續一段時間以后。由于在0.15 s時設定轉速變大,使得內外轉子力矩發生波動,但是從圖10可知,力矩很快恢復到穩定值。當電機三相電流在給定內外轉子轉速和力矩的情況下,在較快速度下達到穩定值,在達到穩定穩定狀態并持續一段時間以后,由于轉速發生改變,使得三相電流出現了波動,但是隨后快速穩定下來,如圖11所示。在0.25 s時人為將力矩變為1.5 N·m,從圖10可以看出電機內外轉速受力矩變化影響很小,幾乎沒有變化,在圖10中,當力矩大小發生改變時,電機的力矩響應非常迅速,很快就達到了1.5 N·m。圖11看出當三相電流的波形曲線在力矩發生改變的同時,能夠快速的響應,達到較理想的穩定狀態。

總的來說,仿真結果表明,本文所設計的雙轉子永磁同步電機(DRPMSM)單神經元模糊PID控制系統仿真結果在運行過程中,轉速、力矩、三相電流都能保持平穩,當轉速、力矩在某時間段里改變的情況下,也能夠在短時間里穩定下來。與傳統的矢量控制方法相對比,本次所設計的控制系統響應速度更快,仿真結果較理想。

4結論

本文分析了雙轉子永磁同步電機(DRPMSM)的工作原理,建立了電機的數學模型,搭建了單神經元模糊PID控制系統,并進行了對比仿真研究。仿真結果表明:在轉速、力矩發生改變的情況下,采用單神經元模糊PID控制方法運行響應速度都達到了預期的實驗效果,相比于傳統的矢量控制系統具有更好的動靜態性能。通過仿真結果的分析,深入了解了雙轉子永磁同步電機的轉速、力矩和相電流各自的特點和它們之間的相互影響。同時,本次試驗結果也為進一步分析和設計雙轉子永磁同步電機(DRPMSM)本體結構和控制策略提供了參考。當然本文對電機內外轉子之間的相互干擾并未做相關分析,對于如何優化控制策略,使控制器性能達到最優還有待進一步實驗分析,在今后的研究中,相信對于本體結構優化設計、電機數學模型的改進以及控制算法的創新會是雙轉子永磁同步電機研究的重點。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 永磁電機
    +關注

    關注

    4

    文章

    317

    瀏覽量

    24659
  • PID控制
    +關注

    關注

    10

    文章

    444

    瀏覽量

    39743
  • 神經元
    +關注

    關注

    1

    文章

    287

    瀏覽量

    18357

原文標題:【學術論文】雙轉子永磁同步電機控制的建模與仿真

文章出處:【微信號:ChinaAET,微信公眾號:電子技術應用ChinaAET】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于單神經元PID控制實現

    介紹了一種神經元自適應控制方法,并提出了在線調整的方法。該方法結構簡單,便于在分散
    的頭像 發表于 08-31 08:31 ?1.4w次閱讀
    基于單<b class='flag-5'>神經元</b>的<b class='flag-5'>PID</b><b class='flag-5'>控制</b>實現

    基于DSP的交流伺服電機控制

    基于DSP的交流伺服電機控制文建立了基于DSP的交流伺服電機控制系統,并將模糊PD算法與神經元自適應P
    發表于 02-25 17:47

    采用神經元自適應控制高精度空調系統仿真

    具有自學習、自適應功能的神經元控制算法引入高精度空調控制領域,并通過MATLAB仿真,考察了系統的控制效果。仿真結果表明此控制
    發表于 03-18 22:28

    0028《PID神經元網絡及其控制系統》國防工業出版社-2006.pdf

    =viewthread&tid=287358&fromuid=286650028《PID神經元網絡及其控制系統》國防工業出版社-2006.pdf(6M)希望大家多頂頂,提升提升人氣。`
    發表于 12-02 09:08

    神經模糊控制在SAW壓力傳感器溫度補償中的應用

    。鑒于此種情況,本文采用了神經模糊控制方法,對SAW壓力傳感器進行智能溫度補償。 神經模糊
    發表于 10-24 11:36

    如何去設計一種自適應神經元控制器?求過程

    如何去設計一種自適應神經元控制器?求過程
    發表于 05-17 06:56

    基于BP神經網絡的PID控制

    最近在學習電機的智能控制,上周學習了基于神經元PID控制,這周研究基于BP神經網絡的
    發表于 09-07 07:43

    適用于非線性對象的模糊神經元控制方法

    針對具有嚴重非線性的受控對象,提出了一種模糊神經元控制方法。該方法
    發表于 03-17 10:24 ?9次下載

    基于模糊專家模型的神經控制器及應用研究

    針對具有嚴重非線性特性的聲中和過程,提出了一種基于模糊專家模型的神經控制策略,這種方法神經網絡
    發表于 03-18 08:47 ?29次下載

    一種基于PID神經網絡的解耦控制方法的研究

    為了消除造紙工業抄紙過程中存在的解耦問題,提出了一種基于PID 神經網絡的解耦方法。文章在介紹PID
    發表于 06-15 10:10 ?19次下載

    基于遺傳算法的球磨機模糊——神經元控制系統

    提出了一種基于遺傳算法的模糊神經元控制系統實現水泥廠球磨機自控的設計方案。將遺傳算法與模糊邏輯、神經元
    發表于 07-09 15:49 ?30次下載

    一種改進的單神經元二自由度PID控制

    提出一種神經元二自由度PID 控制方法,將前饋型二自由度PID 的五個參數分別對應于單
    發表于 08-27 08:35 ?11次下載

    基于模糊聚類的神經元識別方法_張晶

    基于模糊聚類的神經元識別方法_張晶
    發表于 01-08 11:13 ?0次下載

    模糊神經PID在空分液位控制中的應用_宋星星

    模糊神經PID在空分液位控制中的應用_宋星星
    發表于 01-18 20:21 ?1次下載

    基于模糊聚類方法神經元形態分類識別_劉輝舟

    基于模糊聚類方法神經元形態分類識別_劉輝舟
    發表于 03-16 10:31 ?0次下載
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>