<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

淺談超分辨光學成像

jf_64961214 ? 來源:jf_64961214 ? 作者:jf_64961214 ? 2024-03-15 06:35 ? 次閱讀

wKgaomXze7uAa9jAAABIyg0MW68449.png

分辨光學定義及應用

分辨光學成像特指分辨率打破了光學顯微鏡分辨率極限(200nm)的顯微鏡,技術原理主要有受激發射損耗顯微鏡技術和光激活定位顯微鏡技術。

管中亦可窺豹——受激發射損耗顯微鏡

傳統光學顯微鏡采用寬場成像的方式,照明光一次照亮整個成像范圍,然后用相機對整個成像范圍進行曝光成像,一次獲得整幅圖像?!肮苤懈Q豹”型的掃描成像則有所不同,照明光聚焦在樣品上,形成一個極小的光點——也就是所謂的“管”,每次只對光點對應的區域進行成像;當我們改變光點的位置,使它依次掃遍整個樣品,也就獲得了一幅完整的圖像。有人要問了,即使采用“管中窺豹”的方式,每次聚焦的光點依然受到衍射極限限制,系統分辨能力比起所謂的寬場成像沒有提高,掃描過程又增加了系統的復雜度,不是自找麻煩嗎?Stefan W. Hell的回答很簡單:只要設法縮小“管中窺豹”的“管”,就能提高系統的分辨能力,實現超分辨。

通常的熒光成像是這樣的:熒光分子在吸收了照明光(或者叫激發光)A之后,會在很短的時間持續發出熒光B。掃描成像系統的分辨能力取決于A在樣品處的聚焦光點大小。Hell找到了熒光的開關——第三種光C,在C的照射下,熒光分子即使吸收了激發光A,也沒法再發出熒光B。Hell讓開關C同樣打在樣品上,形成一個四周亮、中心暗的“面包圈”,“面包圈”中心的暗區域比艾里斑還要小;然后把面包圈套在艾里斑上,就像在“管”的出口又加了一個小孔,使“管”的直徑大大減少,也就提高了整臺顯微鏡的分辨能力。

wKgZomXze7yAF5R4AAClgWb0eRU021.png

“面包圈”限制了激發光A的有效范圍

“我只看到星星”“我看到了銀河”——光激活定位顯微

熒光分子是熒光樣品的最小發光單元,由于衍射極限的限制,在相鄰的兩個熒光分子同時點亮時,我們只能看到一個光斑,但如果每次只點亮一個分子,就可以通過光斑,計算得到熒光分子的準確位置。

Eric Betzig和William E. Moerner采用的就是這樣一種方法,如果說STED技術核心是“擦除”,那么PALM技術的核心就是“定位”:Moerner發現存在光D可以“打開”熒光。通過控制D的照射劑量,保證每次只有少量熒光分子處在打開狀態;當熒光分子在開與關之間切換時,整幅圖像中的熒光信號就會像銀河中的星星一樣亮暗閃爍,只要進行足夠多次的開關和成像,就可以組合出整個樣品的圖像。

wKgaomXze7yAVfaNAABI7n9ficQ029.jpg

溶酶體膜在不同顯微鏡下的成像結果。(左)傳統光學顯微鏡成像;(中)光激活定位顯微鏡成像;(右)放大的光激活定位顯微鏡成像。

參考使用產品

美國普林斯頓公司-FERGIE

wKgZomXze7yAJEHwAAJ65KgPpAU213.png

特點:

· 無像差光學設計,完全沒有彗形相差;

· FERGIE特有的光學設計可產生衍射極限圖像,適用于從紫外到近紅外波長的微光光譜應用;

· 集成TE冷卻背照式CCD,制冷低至-55°C,允許長的積分時間來檢測微弱的信號;

· 幀轉移CCD架構,1kHz的頻率捕獲光譜速率(合并10行);

· 基于FPGA的內部定時發生器;

· 動力學光譜模式,擁有微秒時間分辨率。

美國普林斯頓公司-IsoPlance

wKgaomXze72AA_oFAADAnr-Flo0163.jpg

特點:

· 無雜散光設計;

· 出色的成像性能;

· 高光通量;

· 動力學塔輪,支持三個光柵,軟件控制自動旋轉;

· 高效率光學鍍膜,可選的銀,金或介電涂層的反射率為98%。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 光譜
    +關注

    關注

    4

    文章

    658

    瀏覽量

    34635
  • 成像系統
    +關注

    關注

    2

    文章

    175

    瀏覽量

    13807
  • 光學成像
    +關注

    關注

    0

    文章

    82

    瀏覽量

    9987
收藏 人收藏

    評論

    相關推薦

    深圳中科飛測科技股份有限公司榮獲“一種光學成像裝置”專利

    此項發明提供了一種光學成像裝置,能夠獲取物鏡瞳孔的共軛瞳孔,并將物鏡瞳孔與待檢物體進行成像,進而通過物鏡瞳孔的影像,在共軛瞳孔處對物鏡瞳孔進行空間濾波。具體實現方式如下:首先,將物鏡、中繼鏡、第一成像組件及第一拍攝設備共軸設置
    的頭像 發表于 05-10 10:16 ?107次閱讀
    深圳中科飛測科技股份有限公司榮獲“一種<b class='flag-5'>光學成像</b>裝置”專利

    基于光子糾纏的自適應光學成像技術應用

    對引導星的依賴給顯微鏡成像細胞和組織等不含亮點的樣本帶來了問題??茖W家們利用圖像處理算法開發了無引導星的自適應光學系統,但這些系統可能會因結構復雜的樣本而失效。
    發表于 03-11 11:29 ?153次閱讀
    基于光子糾纏的自適應<b class='flag-5'>光學成像</b>技術應用

    一種基于擴散模型的傅里葉單像素成像分辨率迭代重建方法

    傅里葉單像素成像(FSPI)是一種基于傅里葉分析理論的計算光學成像技術。
    的頭像 發表于 01-24 09:43 ?322次閱讀
    一種基于擴散模型的傅里葉單像素<b class='flag-5'>成像</b>高<b class='flag-5'>分辨</b>率迭代重建方法

    新技術:使用超光學器件進行熱成像

    研究人員開發出一種新技術,該技術使用超光學器件進行熱成像。能夠提供有關成像物體的更豐富信息,可以拓寬熱成像在自主導航、安全、熱成像、醫
    發表于 01-16 11:43 ?175次閱讀

    淺談相機的圖像分辨

    談到顯微成像系統,常常會用分辨率來評價成像能力的高低,那分辨率到底指的是什么,又怎樣計算呢?其實對于一個特定的顯微成像系統,
    的頭像 發表于 01-09 09:54 ?591次閱讀
    <b class='flag-5'>淺談</b>相機的圖像<b class='flag-5'>分辨</b>率

    2023十大科技趨勢之一:計算光學成像

    計算光學成像是一個新興多學科交叉領域。它以具體應用任務為準則,通過多維度獲取或編碼光場信息(如角度、偏振、相位等),為傳感器設計遠超人眼的感知新范式;
    的頭像 發表于 11-17 17:10 ?960次閱讀
    2023十大科技趨勢之一:計算<b class='flag-5'>光學成像</b>

    計算光學成像如何突破傳統光學成像極限

    傳統光學成像建立在幾何光學基礎上,借鑒人眼視覺“所見即所得”的原理,而忽略了諸多光學高維信息。當前傳統光學成像在硬件功能、成像性能方面接近物
    發表于 11-17 17:08 ?283次閱讀
    計算<b class='flag-5'>光學成像</b>如何突破傳統<b class='flag-5'>光學成像</b>極限

    基于光學成像的物體三維重建技術研究

    隨著計算機科學和數字成像技術的飛速發展,光學成像技術在許多領域中得到了廣泛應用,其中之一便是物體三維重建。物體三維重建技術是一種通過計算機處理圖像數據,獲得物體三維信息的技術。光學成像技術作為物體
    的頭像 發表于 09-15 09:29 ?568次閱讀
    基于<b class='flag-5'>光學成像</b>的物體三維重建技術研究

    用于遠場高分辨學成像的可生物降解柔性聲學超構表面功能器件

    聲人工結構超構表面是一種可產生特殊物理效應的新穎聲學結構,其獨特之處在于能夠對聲波的相位、振幅進行完全控制,可個性化定制任意波場,在高/超分辨學成像、精準操控給藥和可穿戴器件等方面具有重要應用前景。?
    的頭像 發表于 09-08 10:00 ?1274次閱讀
    用于遠場高<b class='flag-5'>分辨</b>醫<b class='flag-5'>學成像</b>的可生物降解柔性聲學超構表面功能器件

    超透鏡揭示傳統光學成像技術無法看到的亞波長級別的特征

    ? ? 一個由中國和英國科學家組成的團隊制造了迄今為止分辨率最高的光學成像透鏡。?? 19世紀以來,醫生們一直認為,光學顯微鏡存在一個分辨率極限,超出這個極限就無法清楚地看到物體。當物
    的頭像 發表于 08-28 10:23 ?422次閱讀

    光學頻段碳化硅極化激元超透鏡為光學成像發展提供新思路

    》在線發表。 找到一雙又一雙“火眼金睛”,不斷把微觀世界看清楚,是許多科研人員的研究目標?;跇O化激元和超構材料構筑的超透鏡,此前已將光學成像分辨率提升至數百納米水平,借此可直接觀測微觀物質,被廣泛應用于生物醫
    的頭像 發表于 08-24 09:32 ?658次閱讀

    基于SLM的計算散射成像(鬼成像)系統

    概述 光學成像在理論研究和日常生活中都發揮了重要的作用。傳統的光學成像方式是對光場強度分布測量,是通過光場的一階關聯信息(強度與位相)來獲得物體的信息,如顯微鏡、照相機、望遠鏡等。散射成像又稱
    的頭像 發表于 08-11 11:43 ?487次閱讀
    基于SLM的計算散射<b class='flag-5'>成像</b>(鬼<b class='flag-5'>成像</b>)系統

    光學器件的分辨率與什么有關 影響透鏡分辨率的因素

    分辨率不僅與光學器件本身有關,還與被觀測或被成像的對象以及環境條件有關。例如,被觀測物體的對比度、背景噪聲、光照條件等都可能對分辨率產生影響。
    發表于 07-25 14:10 ?3084次閱讀

    捕獲“彩虹”超分辨率的位移光譜成像

    基于成像的傳感技術是實現生物或化學方面一些重要信息可視化的主要工具。然而,由于經典光學存在衍射極限,為了實現更好的成像能力,傳統的光學成像系統通常需要龐大的體積,并且價格昂貴。微型納米
    發表于 06-20 12:35 ?331次閱讀
    捕獲“彩虹”超<b class='flag-5'>分辨</b>率的位移光譜<b class='flag-5'>成像</b>儀

    光學成像質量評價

    從物面上任意一點發出的光波,攜帶著該物點的信息,本來是向著所有方向發射的,但成像鏡頭都有孔徑光欄,限制了物點發出的光束,只接收孔徑角2u 范圍內的光束進入系統并傳遞,參與成像。超出該孔徑的光束通不過透鏡。
    的頭像 發表于 06-07 14:34 ?679次閱讀
    <b class='flag-5'>光學成像</b>質量評價
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>