<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

使用輪廓分數提升時間序列聚類的表現

冬至子 ? 來源:思否AI ? 作者:思否AI ? 2023-10-17 10:35 ? 次閱讀

我們將使用輪廓分數和一些距離指標來執行時間序列聚類實驗,并且進行可視化

讓我們看看下面的時間序列:

如果沿著y軸移動序列添加隨機噪聲,并隨機化這些序列,那么它們幾乎無法分辨,如下圖所示-現在很難將時間序列列分組為簇:

上面的圖表是使用以下腳本創建的:

# Import necessary libraries
 import os
 import pandas as pd
 import numpy as np
 
 # Import random module with an alias 'rand'
 import random as rand
 from scipy import signal
 
 # Import the matplotlib library for plotting
 import matplotlib.pyplot as plt
 
 # Generate an array 'x' ranging from 0 to 5*pi with a step of 0.1
 x = np.arange(0, 5*np.pi, 0.1)
 
 # Generate square, sawtooth, sin, and cos waves based on 'x'
 y_square = signal.square(np.pi * x)
 y_sawtooth = signal.sawtooth(np.pi * x)
 y_sin = np.sin(x)
 y_cos = np.cos(x)
 
 # Create a DataFrame 'df_waves' to store the waveforms
 df_waves = pd.DataFrame([x, y_sawtooth, y_square, y_sin, y_cos]).transpose()
 
 # Rename the columns of the DataFrame for clarity
 df_waves = df_waves.rename(columns={0: 'time',
                                     1: 'sawtooth',
                                     2: 'square',
                                     3: 'sin',
                                     4: 'cos'})
 
 # Plot the original waveforms against time
 df_waves.plot(x='time', legend=False)
 plt.show()
 
 # Add noise to the waveforms and plot them again
 for col in df_waves.columns:
     if col != 'time':
         for i in range(1, 10):
             # Add noise to each waveform based on 'i' and a random value
             df_waves['{}_{}'.format(col, i)] = df_waves[col].apply(lambda x: x + i + rand.random() * 0.25 * i)
 
 # Plot the waveforms with added noise against time
 df_waves.plot(x='time', legend=False)
 plt.show()

現在我們需要確定聚類的基礎。這里有兩種方法:

把接近于一組的波形分組——較低歐幾里得距離的波形將聚在一起。

把看起來相似的波形分組——它們有相似的形狀,但歐幾里得距離可能不低

距離度量

一般來說,我們希望根據形狀對時間序列進行分組,對于這樣的聚類-可能希望使用距離度量,如相關性,這些度量或多或少與波形的線性移位無關。

讓我們看看上面定義的帶有噪聲的波形對之間的歐幾里得距離和相關性的熱圖:

可以看到歐幾里得距離對波形進行分組是很困難的,因為任何一組波形對的模式都是相似的。例如,除了對角線元素外,square & cos之間的相關形狀與square和square之間的相關形狀非常相似

所有的形狀都可以很容易地使用相關熱圖組合在一起——因為類似的波形具有非常高的相關性(sin-sin對),而像sin和cos這樣的波形幾乎沒有相關性。

輪廓分數

通過上面熱圖和分析,根據高相關性分配組看起來是一個好主意,但是我們如何定義相關閾值呢?看起來像一個迭代過程,容易出現不準確和大量的人工工作。

在這種情況下,我們可以使用輪廓分數(Silhouette score),它為執行的聚類分配一個分數。我們的目標是使輪廓分數最大化。

輪廓分數(Silhouette Score)是一種用于評估聚類質量的指標,它可以幫助你確定數據點是否被正確地分配到它們的簇中。較高的輪廓分數表示簇內數據點相互之間更加相似,而不同簇之間的數據點差異更大,這通常是良好的聚類結果。

輪廓分數的計算方法如下:

  1. 對于每個數據點 i,計算以下兩個值:- a(i):數據點 i 到同一簇中所有其他點的平均距離(簇內平均距離)。- b(i):數據點 i 到與其不同簇中的所有簇的平均距離,取最小值(最近簇的平均距離)。
  2. 然后,計算每個數據點的輪廓系數 s(i),它定義為:s(i) = frac{b(i) - a(i)}{max{a(i), b(i)}}
  3. 最后,計算整個數據集的輪廓分數,它是所有數據點的輪廓系數的平均值:text{輪廓分數} = frac{1}{N} sum_{i=1}^{N} s(i)

其中,N 是數據點的總數。

輪廓分數的取值范圍在 -1 到 1 之間,具體含義如下:

  • 輪廓分數接近1:表示簇內數據點相似度高,不同簇之間的差異很大,是一個好的聚類結果。
  • 輪廓分數接近0:表示數據點在簇內的相似度與簇間的差異相當,可能是重疊的聚類或者不明顯的聚類。
  • 輪廓分數接近-1:表示數據點更適合分配到其他簇,不同簇之間的差異相比簇內差異更小,通常是一個糟糕的聚類結果。

一些重要的知識點:

在所有點上的高平均輪廓分數(接近1)表明簇的定義良好且明顯。

低或負的平均輪廓分數(接近-1)表明重疊或形成不良的集群。

0左右的分數表示該點位于兩個簇的邊界上。

聚類

現在讓我們嘗試對時間序列進行分組。我們已經知道存在四種不同的波形,因此理想情況下應該有四個簇。

歐氏距離

pca = decomposition.PCA(n_components=2)
 pca.fit(df_man_dist_euc)
 df_fc_cleaned_reduced_euc = pd.DataFrame(pca.transform(df_man_dist_euc).transpose(), 
                                               index = ['PC_1','PC_2'],
                                               columns = df_man_dist_euc.transpose().columns)
 
 index = 0
 range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
 
 # Iterate over different cluster numbers
 for n_clusters in range_n_clusters:
     # Create a subplot with silhouette plot and cluster visualization
     fig, (ax1, ax2) = plt.subplots(1, 2)
     fig.set_size_inches(15, 7)
 
     # Set the x and y axis limits for the silhouette plot
     ax1.set_xlim([-0.1, 1])
     ax1.set_ylim([0, len(df_man_dist_euc) + (n_clusters + 1) * 10])
 
     # Initialize the KMeans clusterer with n_clusters and random seed
     clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)
     cluster_labels = clusterer.fit_predict(df_man_dist_euc)
 
     # Calculate silhouette score for the current cluster configuration
     silhouette_avg = silhouette_score(df_man_dist_euc, cluster_labels)
     print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg)
     sil_score_results.loc[index, ['number_of_clusters', 'Euclidean']] = [n_clusters, silhouette_avg]
     index += 1
     
     # Calculate silhouette values for each sample
     sample_silhouette_values = silhouette_samples(df_man_dist_euc, cluster_labels)
     
     y_lower = 10
 
     # Plot the silhouette plot
     for i in range(n_clusters):
         # Aggregate silhouette scores for samples in the cluster and sort them
         ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
         ith_cluster_silhouette_values.sort()
 
         # Set the y_upper value for the silhouette plot
         size_cluster_i = ith_cluster_silhouette_values.shape[0]
         y_upper = y_lower + size_cluster_i
 
         color = cm.nipy_spectral(float(i) / n_clusters)
 
         # Fill silhouette plot for the current cluster
         ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7)
 
         # Label the silhouette plot with cluster numbers
         ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
         y_lower = y_upper + 10  # Update y_lower for the next plot
 
     # Set labels and title for the silhouette plot
     ax1.set_title("The silhouette plot for the various clusters.")
     ax1.set_xlabel("The silhouette coefficient values")
     ax1.set_ylabel("Cluster label")
 
     # Add vertical line for the average silhouette score
     ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
     ax1.set_yticks([])  # Clear the yaxis labels / ticks
     ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
 
     # Plot the actual clusters
     colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
     ax2.scatter(df_fc_cleaned_reduced_euc.transpose().iloc[:, 0], df_fc_cleaned_reduced_euc.transpose().iloc[:, 1],
                 marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k")
 
     # Label the clusters and cluster centers
     centers = clusterer.cluster_centers_
     ax2.scatter(centers[:, 0], centers[:, 1], marker="o", c="white", alpha=1, s=200, edgecolor="k")
 
     for i, c in enumerate(centers):
         ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
 
     # Set labels and title for the cluster visualization
     ax2.set_title("The visualization of the clustered data.")
     ax2.set_xlabel("Feature space for the 1st feature")
     ax2.set_ylabel("Feature space for the 2nd feature")
 
     # Set the super title for the whole plot
     plt.suptitle("Silhouette analysis for KMeans clustering on sample data with n_clusters = %d" % n_clusters,
                  fontsize=14, fontweight="bold")
 
 plt.savefig('sil_score_eucl.png')
 plt.show()

可以看到無論分成多少簇,數據都是混合的,并不能為任何數量的簇提供良好的輪廓分數。這與我們基于歐幾里得距離熱圖的初步評估的預期一致

相關性

pca = decomposition.PCA(n_components=2)
 pca.fit(df_man_dist_corr)
 df_fc_cleaned_reduced_corr = pd.DataFrame(pca.transform(df_man_dist_corr).transpose(), 
                                               index = ['PC_1','PC_2'],
                                               columns = df_man_dist_corr.transpose().columns)
 
 index=0
 range_n_clusters = [2,3,4,5,6,7,8]
 for n_clusters in range_n_clusters:
     # Create a subplot with 1 row and 2 columns
     fig, (ax1, ax2) = plt.subplots(1, 2)
     fig.set_size_inches(15, 7)
 
     # The 1st subplot is the silhouette plot
     # The silhouette coefficient can range from -1, 1 but in this example all
     # lie within [-0.1, 1]
     ax1.set_xlim([-0.1, 1])
     # The (n_clusters+1)*10 is for inserting blank space between silhouette
     # plots of individual clusters, to demarcate them clearly.
     ax1.set_ylim([0, len(df_man_dist_corr) + (n_clusters + 1) * 10])
 
     # Initialize the clusterer with n_clusters value and a random generator
     # seed of 10 for reproducibility.
     clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)
     cluster_labels = clusterer.fit_predict(df_man_dist_corr)
 
     # The silhouette_score gives the average value for all the samples.
     # This gives a perspective into the density and separation of the formed
     # clusters
     silhouette_avg = silhouette_score(df_man_dist_corr, cluster_labels)
     print(
         "For n_clusters =",
         n_clusters,
         "The average silhouette_score is :",
         silhouette_avg,
     )
     sil_score_results.loc[index,['number_of_clusters','corrlidean']] = [n_clusters,silhouette_avg]
     index=index+1
     
     sample_silhouette_values = silhouette_samples(df_man_dist_corr, cluster_labels)
     
     y_lower = 10
     for i in range(n_clusters):
         # Aggregate the silhouette scores for samples belonging to
         # cluster i, and sort them
         ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
 
         ith_cluster_silhouette_values.sort()
 
         size_cluster_i = ith_cluster_silhouette_values.shape[0]
         y_upper = y_lower + size_cluster_i
 
         color = cm.nipy_spectral(float(i) / n_clusters)
         ax1.fill_betweenx(
             np.arange(y_lower, y_upper),
             0,
             ith_cluster_silhouette_values,
             facecolor=color,
             edgecolor=color,
             alpha=0.7,
         )
 
         # Label the silhouette plots with their cluster numbers at the middle
         ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
 
         # Compute the new y_lower for next plot
         y_lower = y_upper + 10  # 10 for the 0 samples
 
     ax1.set_title("The silhouette plot for the various clusters.")
     ax1.set_xlabel("The silhouette coefficient values")
     ax1.set_ylabel("Cluster label")
 
     # The vertical line for average silhouette score of all the values
     ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
 
     ax1.set_yticks([])  # Clear the yaxis labels / ticks
     ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
 
     # 2nd Plot showing the actual clusters formed
     colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
     
     ax2.scatter(
         df_fc_cleaned_reduced_corr.transpose().iloc[:, 0], 
         df_fc_cleaned_reduced_corr.transpose().iloc[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k"
     )
     
 #     for i in range(len(df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 0])):
 #                         ax2.annotate(list(df_fc_cleaned_cleaned_reduced.transpose().index)[i], 
 #                                      (df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 0][i], 
 #                                       df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 1][i] + 0.2))
         
     # Labeling the clusters
     centers = clusterer.cluster_centers_
     # Draw white circles at cluster centers
     ax2.scatter(
         centers[:, 0],
         centers[:, 1],
         marker="o",
         c="white",
         alpha=1,
         s=200,
         edgecolor="k",
     )
 
     for i, c in enumerate(centers):
         ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
 
     ax2.set_title("The visualization of the clustered data.")
     ax2.set_xlabel("Feature space for the 1st feature")
     ax2.set_ylabel("Feature space for the 2nd feature")
 
     plt.suptitle(
         "Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
         % n_clusters,
         fontsize=14,
         fontweight="bold",
     )
 
 plt.show()

當選擇的簇數為4時,我們可以清楚地看到分離的簇,其他結果通常比歐氏距離要好得多。

歐幾里得距離與相關廓形評分的比較

輪廓分數表明基于相關性的距離矩陣在簇數為4時效果最好,而在歐氏距離的情況下效果就不那么明顯了結論

總結

在本文中,我們研究了如何使用歐幾里得距離和相關度量執行時間序列聚類,并觀察了這兩種情況下的結果如何變化。如果我們在評估聚類時結合Silhouette,我們可以使聚類步驟更加客觀,因為它提供了一種很好的直觀方式來查看聚類的分離情況。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • for循環
    +關注

    關注

    0

    文章

    61

    瀏覽量

    2435
收藏 人收藏

    評論

    相關推薦

    基于模糊表征的音頻例子檢索及相關反饋

    避免先前基于例子的音頻檢索要按照監督機制訓練不同類別的復雜的音頻模板,直接從原始音頻流中提取壓縮域特征,使用時空約束機制進行壓縮域特征的模糊,用結果的質心來表征整個音頻例子,基
    發表于 03-06 22:10

    FCM算法以及改進模糊算法用于醫學圖像分割的matlab源程序

    FCM算法以及改進模糊算法用于醫學圖像分割的matlab源程序
    發表于 05-11 23:54

    請教51用的算法

    在一個數組中使用算法找出重復出現的數組元素,然后使用其他字符表示,達到減少儲存空間的作用,有哪位大哥做過相關的項目嗎?希望可以賜教一下或者有償提供服務也可以!
    發表于 03-09 23:07

    LDA主題學習總結

    LDA主題學習小結
    發表于 06-01 10:29

    Python如何實現模糊動態

    利用Python實現模糊動態
    發表于 06-02 17:38

    K均值算法的MATLAB怎么實現?

    什么是K-均值法?K均值算法的MATLAB怎么實現?
    發表于 06-10 10:01

    基于序列重要點的時間序列分割

    時間序列包含的數據量大、維數高、數據更新快,很難直接在原始時間序列上進行數據挖掘。該文提出一種基于序列重要點(SIP)的
    發表于 04-09 09:05 ?26次下載

    一種基于頻繁模式的時間序列分類框架

    如何提取和選擇時間序列的特征是時間序列分類領域兩個重要的問題。該文提出MNOE(Mining Non-Overlap Episode)算法計算時間
    發表于 02-08 15:41 ?7次下載

    基于部分數據的疊加序列慢時變信道估計

    針對OFDMA通信系統,提出了一種基于部分數據的疊加序列慢時變信道估計算法,并在接收端給出了數據恢復的方法。時變信道采用復指數基擴展模型來描述,對OFDMA系統的導頻序列進行了
    發表于 05-25 14:03 ?28次下載
    基于部<b class='flag-5'>分數</b>據的疊加<b class='flag-5'>序列</b>慢時變信道估計

    流式時間序列的實時相似度研究

    時間序列是一種常見的與時間有關的數據,流式時間序列相對靜態時間
    發表于 11-20 10:30 ?9次下載
    流式<b class='flag-5'>時間</b><b class='flag-5'>序列</b>的實時相似度研究

    基于u-shapelets的時間序列聚類算法

    針對基于u-shapelets的時間序列聚類中u-shapelets集合質量較低的問題,提出一種基于最佳u-shapelets的時間序列聚類算法DivUshapCluster。首先,探
    發表于 11-29 15:26 ?4次下載

    基于導數序列時間序列同構關系

    時間序列序列匹配作為時間序列檢索、聚類、分類、異常監測等挖掘任務的基礎被廣泛研究。但傳統的時間
    發表于 12-12 15:52 ?0次下載
    基于導數<b class='flag-5'>序列</b>的<b class='flag-5'>時間</b><b class='flag-5'>序列</b>同構關系

    opencv用序列存儲輪廓

    輪廓到底是什么?一個輪廓一般對應一系列的點,也就是圖像中的一條曲線.表示的方法可能根據不同情況而有所不同.
    的頭像 發表于 02-02 17:25 ?4032次閱讀
    opencv用<b class='flag-5'>序列</b>存儲<b class='flag-5'>輪廓</b>

    時間序列分析及其應用

    時間序列分析及其應用。
    發表于 02-22 13:56 ?1次下載

    時間序列分析的定義

    01 時間序列分析的定義 1.1 概念 首先,時間序列定義為在一定時間間隔內按時間順序測量的某個
    的頭像 發表于 03-16 16:17 ?4719次閱讀
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>