<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何在高壓應用中利用反相降壓-升壓拓撲

jf_pJlTbmA9 ? 來源:jf_pJlTbmA9 ? 作者:jf_pJlTbmA9 ? 2023-07-11 10:57 ? 次閱讀

問題:

如何輕松地為高壓反相降壓-升壓拓撲選擇合適的線圈?

答案:

使用簡化的占空比方程來繪制線圈電流紋波與電路輸入電壓(轉換為輸出電壓)之間的關系,然后使用ADI的LTspice?驗證結果。

簡介

對于需要生成負電壓軌的應用,可以考慮多種拓撲結構,如“生成負電壓的藝術”一文所述。但是,如果輸入和/或輸出端的絕對電壓超過24V,并且所需的輸出電流可以達到幾安,則充電泵和LDO負壓穩壓器將會因其低電流能力被棄用,而其電磁組件的尺寸,會導致反激式和?uk轉換器解決方案變得相當復雜。

因此,在這種條件下,反相降壓-升壓拓撲能在高效率和小尺寸之間達成較好的折衷效果。

但是,要實現這些優勢,必須充分了解高壓條件下反相降壓-升壓拓撲的工作原理。在深入研究這些細節之前,請先跟隨ADI回顧一下反相降壓-升壓拓撲。然后,比較反相降壓-升壓拓撲、降壓拓撲和升壓拓撲的關鍵電流路徑。

三種基本的非隔離拓撲

反相降壓-升壓拓撲屬于三種基本的非隔離開關拓撲。這些拓撲結構都包括一個控制晶體管(通常是一個MOSFET)、一個二極管(可能是肖特基二極管或有源二極管,即同步MOSFET),以及一個作為儲能元件的功率電感。這三個元件之間的共同連接稱為開關節點。功率電感相對于開關節點的位置決定拓撲結構。

如果線圈位于開關節點和輸出之間,將構成DC-DC降壓轉換器,下文中將其簡稱為降壓轉換器?;蛘?,如果線圈位于輸入和開關節點之間,將構成DC-DC升壓轉換器,簡稱為升壓轉換器。最后,如果線圈位于開關節點和地(GND)之間,則構成DC-DC反相降壓-升壓轉換器。

在每個開關周期,甚至在連續導通模式(CCM)下,所有三種拓撲包含的組件和PCB走線的電流會快速變化,導致圖1c、2c和3c突出顯示的噪聲轉移。盡可能設計較小的熱回路,以降低電路輻射的電磁干擾(EMI)。這里,需要提醒大家的是,熱回路并非一定是電流循環流動的物理回路。實際上,在圖1、圖2和圖3突出顯示的各個回路中,由紅色和藍色突出顯示的組件和線路構成熱回路,其電流急劇轉換并不會發生在相同方向。

1670924284399580.png

圖1.屬于熱回路的組件和線路——在CCM下運行的降壓轉換器

1670924266173314.png

圖2.屬于熱回路的組件和線路——在CCM下運行的升壓轉換器

1670924259829117.png

圖3.屬于熱回路的組件和線路——在CCM下運行的反相降壓-升壓轉換器

對于圖3所示的CCM下運行的反相降壓-升壓轉換器,熱回路由CINC、Q1和D1構成。與降壓和升壓拓撲中的熱回路相比,反相降壓-升壓拓撲的熱回路包含位于輸入和輸出端的組件。在這些組件中,當控制MOSFET開啟時,二極管(或者,如果使用同步MOSFET,則為體二極管)的反相恢復會生成最高的di/dt和EMI。由于需要全面的布局概念來考慮控制這兩個方面的輻射EMI,所以您肯定不希望通過低估在高輸入和/或輸出電壓條件下所需的反相降壓-升壓電感,通過過大的線圈電流紋波生成額外的輻射EMI。對于依賴自己所熟悉的升壓拓撲來確定反相降壓-升壓電路電感的工程師來說,他們會面臨這種風險,而且可通過比較這兩種拓撲看清這一點。

高壓反相降壓-升壓拓撲的設計考量

升壓拓撲和反相降壓-升壓拓撲生成的絕對輸出電壓的幅度要高于輸入電壓。但是,這兩種拓撲之間存在差異,可以通過CCM中各自的占空比(在公式1和公式2中提供)來突出顯示。請注意,這些都是一階近似值,未考慮通過肖特基二極管和功率MOSFET時產生的壓降等影響。

1670924253265904.png

圖4左側顯示的是在VIN = 12V時,這些占空比變化的一階近似值與|VOUT|的關系。此外,假設在這兩種情況下,電源線圈的開關頻率(fSW)為1MHz,電感為1μH,則線圈電流紋波變化與VOUT的關系如圖4右側所示。

1670924247230601.png

圖4.反相降壓-升壓和升壓轉換器中,VIN = 12V時占空比和線圈電流紋波與|VOUT|的關系

從圖4可以看出,與升壓拓撲相比,|VOUT|更低時,反相降壓-升壓拓撲的占空比將會超過50%:分別為12V和24V。大家可以參考圖5加深理解。

在升壓拓撲中,電感位于輸入和輸出之間的路徑中。因此,通過功率電感(VL)的電壓會并入VIN,以提供所需的VOUT。但是,在反相降壓-升壓拓撲中,輸出電壓由VL提供。在這種情況下,功率電感必須為輸出端提供更多電能,這就是|VOUT|更低時,占空比卻已達到50%的原因。

1670924239588646.png

圖5.線圈位置對獲得輸出電壓的影響

也可以換種說法來表述,當|VOUT|/VIN比下降時,反相降壓-升壓拓撲的占空比降低速度要比升壓拓撲慢。這是設計期間要考慮的一個重要事實,大家可以參考圖6更好地了解其影響,其中已重繪占空比和線圈電流紋波的一階近似值,但是是占空比與VIN之間的曲線。

1670924231434205.png

圖6.反相降壓-升壓和升壓轉換器中,|VOUT| = 48V時占空比和線圈電流紋波與VIN的關系

如圖6所示,線圈電流紋波(ΔIL)與VIN和D成正比。在升壓拓撲中,當VIN高于VOUT的一半時,占空比下降的速度快于VIN升高的速度,從VIN = 24V時的50%下降到VIN = 42V時的25%,如圖6左側圖中的藍色曲線所示。因此,對于圖6右側圖所示的升壓拓撲,在VIN高于24V時,ΔIL會快速降低。

但是,對于反相降壓-升壓拓撲,如之前圖4所示,當|VOUT|/VIN下降時,或者說,VIN增大,以提供固定的|VOUT|時,D非常緩慢地下降。圖6左側圖中的綠色曲線顯示了這一點,當VIN升高62.5%,從48V升高到78V時,占空比僅損失25%。由于D的下降不能抵消VIN的升高,線圈電流紋波會隨VIN升高而大幅增加,如圖6右側圖中的綠色曲線所示。

總體來說,與升壓拓撲相比,反相降壓-升壓拓撲在高壓條件下具有更高的線圈電流紋波,所以,在相同的fSW下,反相降壓-升壓拓撲需要更高的線圈值??梢越柚鷪D7,根據具體情況運用這一知識,當然,也是基于一階近似值。

1670924223448867.png

圖7.反相降壓-升壓轉換器中,VOUT = -12V和-150V時占空比和線圈電流紋波與VIN的關系

具有寬輸入電壓范圍和高輸出電流的應用

考慮一下VIN = 7V至72V,VOUT = -12V,電流為5A的應用。在這個高輸出電流下,可以選擇使用同步控制器(ADI的LTC3896)來實現高效率。

選擇電感

在CCM中使用LTC3896時,建議將ΔIL保持在IOUT,MAX(例如,為5A時)的30%和70%之間。因此,ADI在設計時,希望在整個輸入電壓范圍內,ΔIL保持在1.5A和3.5A之間。此外,保持在這個推薦的范圍內,也就是IOUT,MAX的30%和70%之間意味著比率最多能達到2.33,即70%除以30%,也就是輸入電壓范圍內最高電流紋波與最低電流紋波之間的比率。如之前觀察到的結果,對于反相降壓-升壓拓撲這類ΔIL會隨VIN 大幅變化的拓撲來說,這并不是一項簡單的任務。

參考圖7可以看出,當fSW = 1MHz,L = 1μH時,線圈電流紋波會在4.42A和10.29A之間變化,這個值太高了。要使最低ΔIL達到ADI建議的下限1.5A或IOUT,MAX的30%,需要將現在的值4.42A降低三倍??梢詫SW設置為300kHz,選擇10μH電感,加上FREQ引腳上的47.5k?電阻來實現這一點。實際上,這會使ΔIL降低,(1μH × 1MHz)/(300kHz × 10μH) = 1/3。

由于這種降低,現在整個輸入電壓范圍內,線圈電流紋波(ΔIL)會在1.5A和3.4A之間(IOUT,MAX的30%和68%之間)變化。獲得LTC3896數據手冊最后一頁所提供的電路,如圖8所示。

1670924217451231.png

圖8.LTC3896電路:VIN = 7V至72V,VOUT- = -12V,fSW = 300kHz

使用LTspice驗證電感選擇

對于線圈電流紋波,可以使用LTspice來仿真相同的LTC3896電路,如圖9所示,以得出更準確的值。在圖10中,VIN = 7V和72V時,ΔIL分別等于約1.45A和3.5A,這與之前根據圖7以及降低fSW和L獲取的一階近似值一致。請注意,圖10所示的線圈電流在流向RSENSE時,被視為是正電流。

1670924212250956.png

圖9.使用LTspice仿真的LTC3896電路

1670924208694366.png

圖10.測量VIN = 7V和72V時ΔIL的值,使用之前的LTspice電路獲取峰值線圈電流

使用LTspice仿真還有一個好處,可以確定運行期間的峰值線圈電流,即在最低輸入電壓為7V時的電流。

如圖10所示,應用的峰值線圈電流接近15.4A。獲得這個值后,可以選擇電流額定值足夠高的功率電感。

設計采用更高的輸出電壓時

回到圖7,在VIN的范圍為12V至40V,VOUT = -150V這個假設情況下,其中也提供了電流紋波值。

要注意的第一點是,在相同的fSW和L下,要得出更高的VOUT,電流紋波會大幅增高。如此高的ΔIL往往不可取,因此,與之前的示例相比,需要降低更多倍數,這意味著在相同的fSW下,采用更大的電感。

第二點是關于ΔIL在整個輸入電壓范圍內的變化。在之前的示例中,VOUT = -12V,從最低紋波到最高紋波,ΔIL只增加了約2.33倍,輸入電壓卻增長了超過10倍。在當前的示例中,VOUT = -150V,從最低電流紋波到最高電流紋波,ΔIL已經增大2.85倍,但輸入電壓只增大了3.33倍,從12V增大到40V。

還好,這種挑戰只存在于CCM情況下。在斷續導通模式(DCM)下,IOUT(MAX)的30%至70%這種限制不再適用。無論如何,在IOUT(MAX) = 5A時,要一步將VIN = 12V轉換為VOUT = -150V還是太過費力。在任何情況下,要進行這種電壓轉換時,需要的輸出電流一般很低,表示采用DCM模式。例如,LTC3863數據手冊最后一頁所示的電路就是如此,如圖11所示。

1670924184859293.png

圖11.LTC3863電路:VIN = 12V至40V,VOUT- = –150V,fSW = 320kHz

因為DC電流低,所以在這些情況下使用非同步控制器(例如LTC3863)就足以提供不錯的效率。關于在DCM下的這種LTC3863設計,LTspice提供的LTC3863電路是一個不錯的工具,可用于優化線圈選擇。

結論

反相降壓-升壓拓撲的熱回路包含位于輸入和輸出端的組件,所以其布局難度要高于降壓拓撲和升壓拓撲。雖然與升壓拓撲有些類似的地方,但在類似的應用條件下,反相降壓-升壓拓撲的電流紋波更高,這是因為線圈是其唯一的輸出來源(如果忽略輸出電容)。

對于具有高輸入和/或輸出電壓的反相降壓-升壓應用,線圈電流紋波可能更高。為了控制電流紋波,與升壓拓撲相比,反相降壓-升壓拓撲會使用更高的電感值。如本文中ADI就通過一個實例展示了如何根據應用條件來快速調節電感。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • adi
    adi
    +關注

    關注

    144

    文章

    45778

    瀏覽量

    242485
  • 隔離開關
    +關注

    關注

    0

    文章

    178

    瀏覽量

    13616
  • 電流紋波
    +關注

    關注

    1

    文章

    18

    瀏覽量

    9585
收藏 人收藏

    評論

    相關推薦

    基于同步反相SEPIC拓撲結構實現高效率降壓/升壓轉換器

    fRES小于開關頻率fSW)。當fUNITY設置適當時,可以使用標準"II型"補償——兩個極點和一個零點。圖6 顯示同步反相SEPIC 降壓/升壓拓撲結構
    發表于 10-22 16:41

    降壓、升壓降壓升壓拓撲結構詳解

    在本篇文章,我將從不同方面深入介紹降壓、升壓降壓-升壓拓撲結構。
    發表于 03-19 06:45

    LM2574反相降壓升壓的典型應用為-12 V

    LM2574反相降壓 - 升壓的典型應用開發-12 V. LM2574系列穩壓器是單片集成電路,非常適合簡單方便地設計降壓型開關穩壓器(降壓
    發表于 05-20 09:49

    RT8452是一款電流模式PWM控制器,用于降壓 - 升壓降壓 - 升壓拓撲

    典型應用降壓配置的模擬調光,用于RT8452高壓大電流LED驅動器控制器,用于降壓 - 升壓降壓
    發表于 09-04 08:41

    用于通信的高壓升壓反相轉換器

    為何。結論LT8365支持需要對低至2.8 V的輸入電壓實施緊湊、高效、高輸出電壓升壓轉換的應用,這在通信領域是非常常見的。它也可以用作反相轉換器,在常用的拓撲,則可用作(例如)CU
    發表于 09-12 09:25

    創建可編程輸出反相降壓升壓穩壓器的方法

    在很多應用,尤其是測試和測量領域,您都需要借助外部裝置或數字模擬轉換器設置反相降壓/升壓穩壓器的輸出電壓。在常規的降壓
    發表于 10-27 07:29

    深入介紹降壓、升壓降壓-升壓拓撲結構

    在本篇文章,我將從不同方面深入介紹降壓、升壓降壓-升壓拓撲結構。
    發表于 12-31 07:03

    高效降壓/升壓SEPIC拓撲電路

    圖示升壓降壓拓撲電路中會有一個升壓功率級,之后則有一個降壓功率級。如果輸入電壓高于輸出電壓, 升壓
    發表于 11-15 11:10 ?9245次閱讀
    高效<b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b>SEPIC<b class='flag-5'>拓撲</b>電路

    從不同方面深入介紹降壓、升壓降壓-升壓拓撲結構

    在本篇文章中,主要從不同方面深入介紹降壓、升壓降壓-升壓拓撲結構。
    的頭像 發表于 01-10 11:33 ?1.1w次閱讀
    從不同方面深入介紹<b class='flag-5'>降壓</b>、<b class='flag-5'>升壓</b>和<b class='flag-5'>降壓</b>-<b class='flag-5'>升壓</b><b class='flag-5'>拓撲</b>結構

    詳解降壓、升壓以及降壓-升壓拓撲結構

    在本篇文章中,將從不同方面深入介紹降壓、升壓,以及降壓-升壓拓撲結構。
    的頭像 發表于 04-22 11:42 ?3212次閱讀

    何在高壓應用中利用反相降壓-升壓拓撲?

    的尺寸,會導致反激式和?uk轉換器解決方案變得相當復雜。 因此,在這種條件下,反相降壓-升壓拓撲能在高效率和小尺寸之間達成較好的折衷效果。 要實現這些優勢,必須充分了解
    的頭像 發表于 11-15 19:50 ?574次閱讀

    何在高壓應用中利用反相降壓-升壓拓撲

    由于其低電流能力而被丟棄,而其磁性元件的尺寸會導致反激式和?uk轉換器解決方案變得非常麻煩。因此,在這種情況下,反相降壓-升壓在高效率和小尺寸之間提供了最佳折衷方案。
    的頭像 發表于 02-15 10:12 ?636次閱讀
    如<b class='flag-5'>何在</b><b class='flag-5'>高壓</b>應用中<b class='flag-5'>利用</b><b class='flag-5'>反相</b><b class='flag-5'>降壓</b>-<b class='flag-5'>升壓</b><b class='flag-5'>拓撲</b>

    深入介紹3種拓撲結構:降壓、升壓降壓-升壓

    深入介紹3種拓撲結構:降壓、升壓降壓-升壓
    的頭像 發表于 12-07 16:20 ?783次閱讀

    降壓-升壓轉換器

    降壓-升壓轉換器相當于使用單個電感器的反激式轉換器,它們具備兩種主要拓撲結構:反相和同相。反相型的輸出電壓極性與輸入相反,而同相型的輸出與輸
    的頭像 發表于 11-24 13:40 ?445次閱讀
    <b class='flag-5'>降壓</b>-<b class='flag-5'>升壓</b>轉換器

    何在同步反相降壓/升壓拓撲結構中實施ADP2441/ADP2442

    電子發燒友網站提供《如何在同步反相降壓/升壓拓撲結構中實施ADP2441/ADP2442.pdf》資料免費下載
    發表于 11-29 09:34 ?0次下載
    如<b class='flag-5'>何在</b>同步<b class='flag-5'>反相</b><b class='flag-5'>降壓</b>/<b class='flag-5'>升壓</b><b class='flag-5'>拓撲</b>結構中實施ADP2441/ADP2442
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>