<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一文讀懂RLC無源濾波電路設計全過程

冬至配餃子 ? 來源:硬件電子工程師 ? 作者:硬件電子工程師 ? 2023-06-26 10:52 ? 次閱讀

【摘要】

電源電路設計中常見RC/磁珠電容濾波,兩種濾波電路濾波效果有什么差異呢?本文將對RC濾波電路、磁珠電容濾波電路進行了理論分析、仿真分析,并對實際使用情況進行了頻譜測量分析。最終經過分析、仿真、實測給出推薦濾波電路。

一、問題的提出

電源濾波電路的目的是通過電路,將電源模塊上的噪聲和紋波去除掉。常用的無源濾波電路有磁珠電容濾波電路和RC濾波電路兩種,兩種濾波電路所使用的場合和條件不同,作用也不一樣。另外,參數的選擇也很關鍵。工程設計中大部分使用的是PI型濾波,使用較多電路如下:

圖片

這個電路的問題在于,由于磁珠和電容器件參數設置不優,對于一些在低頻部分(10KHz-1MHz)噪聲較大的電源,不能很好的起到電源濾波的作用。下面是使用該濾波網絡的PPC模塊(時鐘模塊)時鐘輸出的頻譜圖??梢院苊黠@的看到在300KHz和230KHz附近有開關噪聲的存在,而且其與主頻之間的能量差最大為-49dB左右。該電路需要優化,否則這樣送出的時鐘作為高速信號的參考時鐘是存在誤碼風險的。

圖片

二、解決方法

1、理論分析

(1)RC濾波電路

RC濾波電路的模型如下:

圖片

電路上的方程為:

圖片

其中

圖片

代入得到:

圖片

對上面的公式兩邊取拉式變換得:

圖片

系統的傳遞函數是

圖片

幅頻曲線

圖片

其波特圖的斜率是-20dB

圖片

當w=1/RC時,為其-3dB的截止頻率,即f=1/(2πRC)

(2)磁珠電容濾波電路

再來看看磁珠電容濾波電路的情況,這里的L選取的是磁珠,電感由于所占的體積較大,不適合電路普遍推廣,電感可在有特殊需求的場合下使用。

磁珠可看做是一個LRC并聯的系統,低頻段顯現的是感性,中頻段顯現的是阻性,高頻段顯現的是容性。

圖片

為了電路的分析方便,磁珠我們暫時只把它當做電感和直流等效電阻串聯的模型。整個LC濾波電路電路的模型如下:

圖片

該模型的傳遞函數與幅頻曲線的推導過程可參見相關書籍資料,本文直接使用推導的結論:

圖片

wmax為出現極值點的頻率,及幅頻曲線極大值時的頻率。L為磁珠的感抗值C為濾波電容值,r1為磁珠的直流等效電阻,r2是電容的直流等效電阻。幅頻函數如下:

圖片

可以看出,wmax,與LC相關,同時與r1與r2相關,在L和r1值確定的情況下,C越大,r2值越大,wmax最小。

在L和r1確定的情況下,C越大,r2值越大,越小,超調量越小。

2、仿真分析

磁珠電容濾波電路的情況,原始電路模型如下:

圖片

仿真的幅頻曲線如下:

圖片

f-3dB=44.5kHz,增益峰值為6.75 dB 其在300kHz的幅值是-38dB。

根據理論分析的結果,提高電容的C值與電容對應的ESR的值,可以使wmax減小,在wmax值處的超調量減小

我們加入了大ESR的10uf的鉭電容進行仿真分析,使用的電路模型是

圖片

仿真的幅頻曲線如下:

圖片

f-3dB=39.5kHz,增益峰值為1.112 dB其在300kHz的幅值也是-38dB。

從上面兩圖對比來看,加入了大ESR,大電容值的阻尼電容,確實使得峰值的頻率由44.5kHz轉移到39.5kHz,增益的峰值也由6.75 dB降為了1.112 dB。但是在300kHz附近的幅頻曲線的幅值變化不大,都在-38dB左右。

對RC的情況進行仿真,電路模型如下:

圖片

仿真的幅頻曲線結果如下:

圖片

與理論計算結果基本一致,f-3dB=7.233kHz,其在300kHz的幅值是-32dB

后面實測發現,使用1歐姆的電阻,如果電路電流過大,會導致在電阻上的壓降過大,引起電路不穩定。采用了改進的RC電路,將電阻阻值設置為0.15歐姆,電容C設置為較小ESR的100uf陶瓷電容。電路模型如下:

圖片

仿真的幅頻曲線結果如下:

圖片

與電阻采用1歐姆,電容采用22uf的仿真情況基本一致。

3、實驗結果

磁珠電容濾波電路的改進措施:在磁珠后并聯一個大ESR(0.55歐姆),大容值(100uf)的普通鉭電容,測得的頻譜如下,將300kHz左右的開關噪聲由-49dB降低為-63dB,減小的幅度為14dB。其他頻率的噪聲也有較大的衰減。

圖片

RC的改進措施:將磁珠更換為電阻,改原來的LC濾波為RC濾波。開始使用的電阻阻值為1歐姆,但是1歐姆的電阻串聯在電路中是很不妥的,不能用于較大電流(百mA級)電路,因此需要使用較小阻值的電阻(0.15歐姆)。為了達到較好的濾波效果,與0.15歐姆電阻配合使用時,我們使用低ESR的陶瓷電容,容值為100uf。

測試的幅頻曲線如下:將300kHz左右的開關噪聲由-49dB降低為-73dB,減小的幅度為24dB。其他頻率的噪聲也有較大的衰減。

圖片

可以看出實測使用RC電路的效果要比使用LC電路的效果要好,但是仿真時候結果是LC的電路在300kHz時的幅值為-38dB,RC電路在300kHz時幅值為-29dB。這可能與仿真的模型與實際情況有偏差有關:

(1)實際電路除了仿真的主電容外,還有其他容值的電容,會對實際電路的最后結果產生影響。

(2)磁珠是個較為復雜的器件,其受到溫度影響較大;使用仿真的模型也不能完全將其特性反映出來。

三、總結

1、低頻濾波電路適合使用RC電路。因為小封裝的磁珠電感值較小,對低頻不能起到很好的濾波效果;RC電路易于實現,對低頻的效果很明顯。

2、高頻濾波電路適合使用有磁珠的LC電路。因為磁珠在高頻中就扮演著高頻電阻的作用,能夠有效的濾除高頻雜音成分。但從實際測量的相噪中可以看出,RC電路與LC電路在高頻部分的底噪相差不大,這是由于主電容外的其他容值的小電容起作用的結果。

3、使用RC電路與使用有磁珠的LC電路都應該注意壓降的問題。RC電路尤其要注意,不能將該濾波電路放置在有大電流的電路。因為RC電路本身會耗能,并且效率較差,且要注意電阻所能承受的功率。比如上面使用的0.15歐姆的電阻,其所能承受的功率為1/8瓦,換算成電流為不超過900mA。

4、推薦電路如下:

圖片

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電源電路
    +關注

    關注

    48

    文章

    964

    瀏覽量

    64719
  • ESR
    ESR
    +關注

    關注

    4

    文章

    188

    瀏覽量

    30893
  • 陶瓷電容
    +關注

    關注

    3

    文章

    377

    瀏覽量

    23724
  • LRC
    LRC
    +關注

    關注

    0

    文章

    18

    瀏覽量

    12782
  • RC濾波電路
    +關注

    關注

    1

    文章

    22

    瀏覽量

    4908
收藏 人收藏

    評論

    相關推薦

    筆記本組裝全過程圖解.pdf

    筆記本組裝全過程圖解.pdf
    發表于 12-26 21:22

    熱轉印電路板制作全過程

    熱轉印電路板制作全過程
    發表于 06-24 00:46

    PCB 制作全過程

    `PCB 制作全過程。`
    發表于 08-05 22:43

    音箱制作全過程

    音箱制作全過程
    發表于 08-16 17:00

    有人分享制作藍牙耳機的全過程嗎?

    我想自己制作個藍牙耳機,但是技術不夠,希望有人分享下藍牙耳機的制作全過程,可以是模塊應用,最好是從底層開始制作的,包括軟件的編寫代碼。{:23:}
    發表于 06-02 18:42

    分享個串口實現全過程好資料

    偶然中看到的篇好資料,不敢獨享,來給大家分享下,這里有特別詳細的串口實現通信的全過程,親自操作遍,可零基礎實現串口通信,希望能幫助到大家!
    發表于 02-05 17:18

    講述PCB設計全過程操作

    網上AD教程看似很多,實則零散,詳細地講述PCB設計全過程操作的實用教程并不多,而且大都是舊版本的AD,所以本人寫了個詳盡的手把手畫板教程,內容是目前的流行單片機:stm32的最小系統,新手也能快速上手本教程分為三篇:元件庫的建立,原理圖的畫法,P...
    發表于 08-03 07:40

    (建議收藏)讀懂RC濾波設計全過程

    真實有用信號, 而無RC濾波器當然是大部分濾波器中首選的廉價設計,并且能較簡單數字化為軟件濾波器設計,所以軟件與硬件濾波在于
    發表于 09-10 15:51

    濾波器的相關資料推薦

    濾波電路的作用就是從眾多的信號中挑選出我們想要的信號。根據電路工作是否需要電源分為濾波
    發表于 01-03 08:21

    CPU制造全過程

    CPU制造全過程第1頁:由沙到晶圓,CPU誕生全過程     沙中含有25%的硅,是地殼中第二多元素,在經過氧化之后就成為了二氧化硅,在沙,尤其是石英中二氧
    發表于 09-22 08:08 ?77次下載

    圖解感光干膜制作高精度電路全過程

    圖解感光干膜制作高精度電路全過程
    發表于 03-31 10:33 ?363次下載

    電路設計--RLC串聯電路

    電路設計--RLC串聯電路
    發表于 02-28 22:48 ?0次下載

    手工制作pcb全過程

    手工制作pcb全過程介紹。
    發表于 06-19 10:18 ?0次下載

    電磁爐的維修全過程分享

    電磁爐的維修全過程分享
    發表于 01-10 15:16 ?76次下載

    【干貨】一文讀懂RLC無源濾波電路設計全過程

    ??電源電路設計中常見RC/磁珠電容濾波,兩種濾波電路濾波效果有什么差異呢?本文將對RC濾波
    的頭像 發表于 10-21 11:15 ?3994次閱讀
    【干貨】一文<b class='flag-5'>讀懂</b><b class='flag-5'>RLC</b>無源<b class='flag-5'>濾波</b><b class='flag-5'>電路設計</b><b class='flag-5'>全過程</b>
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>