<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

高功率GaN HEMT的可靠性設計

我快閉嘴 ? 來源:WOLFSPEED ? 作者:WOLFSPEED ? 2022-09-19 09:33 ? 次閱讀

高功率 GaN RF 放大器的熱考慮因素

氮化鎵 (GaN) 是需要高頻率工作(高 Fmax)、高功率密度和高效率的應用的理想選擇。與硅相比,GaN 具有達 3.4 eV 的 3 倍帶隙,達 3.3 MV/cm 的 20 倍臨界電場擊穿,達 2,000 cm2/V·s 的 1.3 倍電子遷移率,這意味著與 RDS(ON) 和擊穿電壓相同的硅基器件相比,GaN RF 高電子遷移率晶體管(HEMT)的尺寸要小得多。因此,GaN RF HEMT 的應用超出了蜂窩基站和國防雷達范疇,在所有 RF 細分市場中獲得應用。

其中許多應用需要很長的使用壽命,典型的國防和電信使用場景需要 10 年以上的工作時間。高功率 GaN HEMT 的可靠性取決于基礎半導體技術中的峰值溫度。為了最大限度地延長和提升 GaN 型放大器系統的壽命和性能,設計者必須充分了解熱環境及其局限性。

#1 結溫和可靠性

衡量半導體器件可靠性的行業標準指標是平均失效時間(MTTF),這是一種統計方法,用于估計在給定的器件樣本經過一定時間的測試后,單個器件失效前經過的時間。MTTF 值通常以年表示,樣本中單個器件發生故障前經過的時間越長,MTTF 越高。

結溫 Tj,或器件中基礎半導體的溫度,與襯底材料在保持基礎半導體散熱上的作用一樣,對器件可靠性起著重要作用。與硅的 120 W/mK 熱導率相比,碳化硅 (SiC) 的熱導率為 430 W/mK,且溫度上升時,下降的更緩慢,這使得后者非常適合用于 GaN。對于類似的晶體管布局:60 W 的功耗和 100 μm 的芯片厚度,碳化硅基氮化鎵(GaN on SiC) 比 硅基氮化鎵(GaN on Si)工作溫度低 19 °C,因此 MTTF 更長。[1,2]

Wolfspeed 通過在直流工作條件下對 GaN HEMT 施加應力,生成 MTTF 與結溫的曲線,其中結溫高達 375 °C。峰值結溫與 MTTF 直接相關,Wolfspeed 的所有 GaN 技術表明,在 225 °C 的峰值結溫下,MTTF 大于 10 年。

#2 GaN 結溫和表面溫度

在 GaN HEMT 的工作過程中,電子在其中從漏極流向源極的 GaN 溝道或結內,達到峰值溫度。這種結溫無法直接測量,因為它被金屬層阻擋(圖 1)。

4ff01876-37b0-11ed-ba43-dac502259ad0.jpg

▲ 圖 1:無法使用 IR 相機直接測量結溫或通道溫度

使用紅外 (IR) 顯微鏡可以測量的是器件表面溫度,但該溫度低于結溫。有限元分析 (FEA) 的使用允許創建精確的通道到表面溫差,從中可計算出結殼熱阻。因此,通過有限元法(FEM)模擬,我們可以將紅外表面測量與結關聯起來。[3]

在 Ansys 軟件中創建物理模型,以反映 IR 測量系統中使用的硬件。這包括器件夾具底部 75 °C 的邊界條件,以匹配 IR 成像條件。軟件使用物理對稱性對模型進行分段,以減少計算資源消耗和模擬時間(圖 2)。

500d9950-37b0-11ed-ba43-dac502259ad0.jpg

▲圖 2:模型截面。器件夾具的底部被限制在 75°C,因為這是

為進行最佳器件校準而取用的所有 IR 測量值對應的散熱器溫度

放大率為 5 倍的 IR 相機分辨率約為 7 μm,而產生熱量的通道寬度小于 1 μm,并埋在其他幾層材料之下。因此,IR 相機測量的是空間平均值(圖 3)。由此產生的數據值明顯低于實際峰值結溫。例如,當 7 μm 以上的空間平均溫度為 165 °C 時,峰值結溫可能高達 204 °C。

502e204e-37b0-11ed-ba43-dac502259ad0.jpg

▲圖 3:利用以熱源為中心的 7μm 截面上模型的平均溫度,

通過統計分析計算 IR 測量值與模擬結果的相關性

#3 計算熱阻

結與殼之間的溫差由熱阻引起,通過將結與殼之間傳遞的熱量乘以結與殼之間的熱阻而得出。下面的等式 1 將熱阻描述為空間中支持固定熱流(q)的兩個表面之間的溫差(Δ)。[4]

等式 1:

506b84a2-37b0-11ed-ba43-dac502259ad0.jpg

這種關系允許 Wolfspeed 計算峰值結溫并確定受測器件(DUT)的 MTTF。

采用 FEM 熱仿真來提取熱阻 Rθjc。封裝法蘭底側的溫度保持在固定值 Tc,固定 DC 功率 Pdiss 在 GaN HEMT 中耗散。計算結 (Tj)和封裝法蘭背面(Tc)之間的溫差,如等式 2 所示。

等式 2:

507d00a6-37b0-11ed-ba43-dac502259ad0.jpg

熱阻計算如下。

等式 3:

5097fc9e-37b0-11ed-ba43-dac502259ad0.jpg

然而,許多使用碳化硅基氮化鎵(GaN on SiC)HEMT 的系統在脈沖調制模式下工作,而不是在連續波(CW)模式下工作。了解熱阻如何響應脈沖寬度和占空比定義的瞬態而變化,以便將正確的 Rθjc 值應用到應用中,這一點很重要。

為了獲得脈沖寬度和占空比的無數組合,使用了幾個占空比的熱阻與脈沖長度的關系圖,其中脈沖長度用對數表示(圖 4)。

50ac5a72-37b0-11ed-ba43-dac502259ad0.jpg

▲圖 4:瞬態熱阻響應曲線顯示了

Rθjc 如何隨脈沖寬度和占空比而變化

#4 器件貼裝考慮因素

大功率晶體管與系統其余部分之間的界面是長期可靠性的關鍵,因為它引入了設計者必須在系統級考慮的額外熱阻(等式 4)。

等式 4:

50c779c4-37b0-11ed-ba43-dac502259ad0.jpg

其中,Raj 是環境到結熱阻,Rint 是界面熱阻,Rhs 是散熱器到環境熱阻。

Wolfspeed 建議用焊接封裝的 GaN 器件以獲得最佳的熱性能。銦箔也可用作熱界面材料,但必須選擇正確的箔厚度,以避免對法蘭施加應力。法蘭安裝的扭矩不得超過數據表中規定的最大值。[5,6]

#5 使用數據表來計算 Tj

以 Wolfspeed 適用于 0.5 GHz - 3.0 GHz 的 CG2H30070F-AMP GaN HEMT 為例,在 25 °C 的外殼溫度下用于 CW 應用。元器件數據表(表 1)中的性能數據可用于計算最高耗散功率,如等式 5 和 6 所示。

50dc2504-37b0-11ed-ba43-dac502259ad0.jpg

▲表 1:使用數據表計算最高耗散功率

等式 5:

50f993d2-37b0-11ed-ba43-dac502259ad0.jpg

等式 6:

511029bc-37b0-11ed-ba43-dac502259ad0.jpg

將數據表中的信息插入電子表格軟件 - 頻率、Pout (dBm)、效率 (%)、Pout (W)、Pin (W) 和 Pdc (W) - 可以快速計算 Pdiss (W) 并選擇最高的 Pdiss,在我們的示例中,在 1.5 GHz 下為 79.8 W 或約 80 W。

參考數據表,我們發現這對應于 1.5oC/W 的 CW 熱阻 Rθjc?,F在可以按照等式 7 計算峰值結溫。

等式 7:

51296206-37b0-11ed-ba43-dac502259ad0.jpg

使用以下值:Tc = 25oC、Pdiss = 80 W 以及 Rθjc = 1.5oC/W,得到 Tj = 145oC。

#6 設計支持

在國防和商業雷達應用以及 LTE5G 部署中,RF GaN 的使用率正在迅速增加。這些應用要求在設計時考慮可靠性。

高功率 GaN HEMT 的可靠性取決于峰值結溫,對于工程師來說,了解如何設計最新的 GaN HEMT 以滿足其設計可靠性目標變得越來越重要。

若需設計支持,請立即聯系 Wolfspeed。

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 放大器
    +關注

    關注

    142

    文章

    12732

    瀏覽量

    210697
  • RF
    RF
    +關注

    關注

    65

    文章

    3025

    瀏覽量

    165788
  • GaN
    GaN
    +關注

    關注

    19

    文章

    1798

    瀏覽量

    68929
  • HEMT
    +關注

    關注

    2

    文章

    52

    瀏覽量

    12253

原文標題:?高功率 GaN RF 放大器的熱考慮因素

文章出處:【微信號:WOLFSPEED,微信公眾號:WOLFSPEED】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Teledyne e2v HiRel新增兩款大功率GaN HEMT

    Teledyne e2v HiRel為其基于GaN Systems技術的650伏行業領先高功率產品系列新增兩款耐用型GaN功率HEMT(高電
    的頭像 發表于 01-09 11:14 ?2871次閱讀

    #硬聲創作季 #可靠性 電子封裝可靠性評價中的實驗力學方法-3

    可靠性設計可靠性元器件可靠性
    水管工
    發布于 :2022年09月29日 22:10:30

    #硬聲創作季 #可靠性 電子封裝可靠性評價中的實驗力學方法-5

    可靠性設計可靠性元器件可靠性
    水管工
    發布于 :2022年09月29日 22:11:21

    #硬聲創作季 #可靠性 電子封裝可靠性評價中的實驗力學方法-6

    可靠性設計可靠性元器件可靠性
    水管工
    發布于 :2022年09月29日 22:11:46

    GaN可靠性的測試

    作者:Sandeep Bahl 最近,一位客戶問我關于氮化鎵(GaN可靠性的問題:“JEDEC(電子設備工程聯合委員會)似乎沒把應用條件納入到開關電源的范疇。我們將在最終產品里使用的任何GaN器件
    發表于 09-10 14:48

    GaN HEMT在電機設計中有以下優點

    器件的商業可用,比如電機逆變器的GaN HEMT和直流部分的高性能電容器正在不斷滿足設計人員對于大功率電機驅動的可靠性需求,這些關鍵部件讓
    發表于 07-16 00:27

    GaN HEMT可靠性測試:為什么業界無法就一種測試標準達成共識

    如果基于GaNHEMT可靠性的標準化測試方法迫在眉睫,那么制造商在幫助同時提供高質量GaN器件方面正在做什么? GaN
    發表于 09-23 10:46

    直接驅動GaN晶體管的優點

    受益于集成器件保護,直接驅動GaN器件可實現更高的開關電源效率和更佳的系統級可靠性。電壓(600V)氮化鎵(GaN電子遷移率晶體管(
    發表于 10-27 06:43

    GaN功率集成電路的可靠性系統方法

    GaN功率集成電路可靠性的系統方法
    發表于 06-19 06:52

    單片GaN器件集成驅動功率轉換的效率/密度和可靠性分析

    單片GaN器件集成驅動功率轉換的效率、密度和可靠性
    發表于 06-21 09:59

    通過集成和應用相關壓力測試的GaN可靠性分析

    通過集成和應用相關壓力測試的GaN可靠性
    發表于 06-21 06:02

    確定GaN產品可靠性的綜合方法

      TI正在設計基于GaN原理的綜合質量保證計劃和相關的應用測試來提供可靠GaN解決方案。氮化鎵(GaN)的材料屬性可使電源開關具有令人興奮且具有突破性的全新特性—
    發表于 04-25 14:16 ?2716次閱讀

    深度解析GaN功率晶體管技術及可靠性

    GaN功率晶體管:器件、技術和可靠性詳解
    發表于 12-21 16:07 ?488次閱讀

    GaN功率HEMT設計+GaN寬帶功率放大器設計

    GaN功率HEMT設計+GaN寬帶功率放大器設計
    發表于 01-30 14:17 ?639次閱讀

    GaN功率器件應用可靠性增長研究

    GaN功率器件是雷達T/R組件或發射功放組件中的核心元器件,隨著器件的輸出功率功率密度越來越高,器件的長期可靠性成為瓶頸。文章對雷達脈沖工
    的頭像 發表于 03-03 14:04 ?1306次閱讀
    <b class='flag-5'>GaN</b><b class='flag-5'>功率</b>器件應用<b class='flag-5'>可靠性</b>增長研究
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>