<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

超越摩爾定律的SiP發展趨勢

荷葉塘 ? 來源:電子發燒友 ? 作者:程文智 ? 2020-06-06 05:50 ? 次閱讀

SiP(System in Package,系統級封裝),就是將多個具有不同功能的有源電子元件與可選無源器件,以及MEMS,或者光學器件等其他器件優先組裝到一起,實現一定功能的單個標準封裝件,形成一個系統,或者子系統。

從架構上來說,它會將處理器、存儲器、電源管理芯片,以及無源器件等不同功能的芯片通過并排,或者疊加的方式封裝在一起。它跟SoC一樣,都可以在芯片層面上實現產品的小型化和微型化。不同的是,SiP是將多顆不同的芯片封裝在一起,SoC是一顆芯片。


圖1:SiP與SoC架構的不同。


SoC是摩爾定律繼續往前發展的產物;而SiP則是實現超越摩爾定律的重要路徑。兩者各有優勢和劣勢,對SoC來說,它具有最高的密度、最高的速度和最低的能耗,但它需要對性能進行妥協、設計變更也不太靈活、開發成本高、開發周期也長、更重要的是良率會比較低;而對SiP來說,它可以選擇最好的元器件、設計變更更加靈活、開發周期短、開發成本低、良率也相對更高。


圖2:SiP與SoC的有缺點對比。


其實,集成電路的封裝技術一直在演進,其演進方向位高密度、高腳位、薄型化和小型化。集成電路封裝技術的發展路徑大致可以分為四個階段,第一階段是插孔元件時代;第二階段是表面貼裝時代;第三階段是面積陣列封裝時代;第四階段是高密度系統級封裝時代。

目前,全球半導體封裝的主流已經進入第四階段,SiP,PoP,Hybrid等主要封裝技術已大規模生產,部分高端封裝技術已向Chiplet產品應用發展。SiP和3D是封裝未來重要的發展趨勢,但鑒于3D封裝技術難度較大、成本較高,SiP,PoP, HyBrid等封裝仍是現階段業界應用于高密度高性能系統級封裝的主要技術。


圖3:2019年全球封測企業市場占有率。



中國半導體協會的數據顯示,2019年我國集成電路封測收入為2,349.7億元,同比增長7.1%。2019年,大陸封測企業數量已經超過了120家,市場規模從2012年的1,034億元,增長至2019年的2,349.7億元,復合增速為12.4%,增速低于集成電路整體增速。

根據Yole預測,到2023年,射頻前端模塊的SiP封裝市場規模將達到53億美元,復合增長率為11.3%。根據Accenture預計,到2026年全球5G芯片市場規模將達到224.1億美元。5G時代的到來,將帶動半導體產業的發展,推動SiP等先進封裝的需求,成為先進封裝領域新的增長動能。

目前可以提供SiP封測服務的企業主要有日月光及其子公司環旭電子、安靠、矽品、長電科技及其子公司星科金朋等幾家封測公司。

SiP的主要應用領域


SiP的應用非常廣泛,主要包括無線通信、汽車電子、醫療電子、計算機和軍用電子等領域。其中應用最為廣泛的當屬無線通信領域。

在無線通信領域,對于功率傳輸效率、噪聲、體積、重量,以及成本等方面的要求越來越高,使得無線通信向低成本、便攜式、多功能和高性能等方向發展。而SiP剛好是最為理想的解決方案。


圖4:長電科技的技術總監劉明亮。


在博聞創意舉辦的第一期SiP線上研討會上,來自長電科技的技術總監劉明亮在其《5G高密度微系統集成封裝如何實現》的主題報告中分享了長電科技的SiP技術在5G移動終端、5G新基建中的應用,詳細介紹了長電科技在SiP封裝技術方面的技術儲備和未來發展方向。

他在演講中表示,對于5G移動終端中的封裝技術來說,挑戰越來越大,首先是由于傳輸速率越來越高,信號完整性的性能要求也更高了;其次是電路板的面積越來越小,芯片封裝需要更高的創造性;還有一個是需要滿足5G終端高頻和低延遲的同時,還要保證足夠的電池續航時間。

目前在5G終端中使用SiP封裝的廠商中,三星和華為是比較領先的。其中,三星2019年8月推出的Galaxy Note 10+ 5G手機中使用了3顆SiP產品,但到了今年2月份發布的Galaxy S20 Ultra 5G時,SiP的用量已經翻倍了。其產品內使用的SiP主要集中在射頻前端部分。


圖5:三星Galaxy S20 Ultra 5G使用的SiP產品。


不過在劉明亮看來,未來由于5G終端中使用的SiP產品越來越多,對封裝廠來說封裝產品的數量將會減少,未來的增量市場只能在天線和天線封裝產品上,因為毫米波的引入,將會需要多個獨立的天線。


圖6:長電科技的SiP產品線發展路線圖。


劉明亮還特意介紹了長電科技在SiP技術的演進方向,目前SiP封裝正在從單面封裝向雙面封裝轉移,預計今年下半年到明年雙面封裝SiP將會成為主流,到2022年將會出現多層3D SiP產品。

汽車電子將會是SiP的重要應用場景。目前汽車電子中的SiP產品也越來越多,特別是在ADAS、汽車防抱死系統、燃油噴射控制系統、安全氣囊電子系統、方向盤控制系統等,此外,車載辦公系統和信息娛樂系統也開始越來越多地使用SiP產品。

醫療電子需要可靠性和小尺寸相結合,同時還要兼顧功能性和壽命。比如膠囊式內窺鏡等可植入式電子醫療器件,需要做得非常小。而內窺鏡通常是由光學鏡頭、圖像處理芯片、射頻信號發射器、天線和電池等組成,如果將這些器件集中封裝在一個SiP內,就能夠完美解決性能和小型化的需求。

還有智能手表、TWS耳機等可穿戴設備中也在越來越多地使用SiP產品。此外,SiP未來還將逐漸向云計算、工業自動化等應用領域滲透。

SiP的EMI挑戰

一來說,SiP的EMI處理方式主要有三種,一是外加屏蔽罩;二是封裝內集成屏蔽罩;三是器件級EMI技術,即共形屏蔽。

廈門韋爾通科技有限公司業務發展經理郎震京先生在分享中表示,由于前兩種屏蔽方式需要加屏蔽罩,會使SiP的產品體積變得更大,因此在一些對體積比較敏感的應用中,一般會使用器件級EMI技術。

郎震京表示,共形式電磁屏蔽屏蔽技術其實已經多年沒有更新了,使用得最多的是PVD真空濺射技術。該技術的前期設備投資特別大,一般都是千萬元級別的,而且占地面積也大、維護復雜、材料利用率低、工藝流程也比較復雜。


圖7:PVD與Spray技術的優缺點對比。


與傳統的PVD技術相比,現在新的Spray噴涂技術可以投入更小,占地面積更小、維護更加簡單,材料利用率也更高。


圖8:Spray噴涂的處理過程。


而且根據韋爾通的測試,經過新技術處理的SiP產品的EMI性能并不比PVD處理后的EMI性能差。

結語

隨著電子硬件不斷演進,過去產品的成本隨著電子硬件不斷演進,性能優勢面臨發展瓶頸,而先進的半導體封裝技術不僅可以增加功能、提升產品價值,還有效降低成本。于是CSP(芯片級封裝)、WLP(晶圓級封裝)、 SiP(系統級封裝)等一列先進技術應運而生。與其他類型相比,SiP最大的特點是能夠實現復雜異質集成需求,將各類性能迥異的有源與可選無器件整合為單個標準封裝件,形成一個系統,或者子系統。比如Apple Watch內使用的SiP在僅為邊長25~30mm的正方形體積內,集成了1000顆以上的有源和無源器件。

而且SiP兼具低成本、低功耗、高性能、小型化和多元化的優勢。未來在摩爾定律失效后,它將扛起后摩爾時代電子產品繼續向前發展的大旗。未來SiP將會廣泛應用于5G、物聯網、智能汽車、可穿戴設備、工業自動化,以及云計算等領域。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 摩爾定律
    +關注

    關注

    4

    文章

    623

    瀏覽量

    78571
  • emi
    emi
    +關注

    關注

    53

    文章

    3470

    瀏覽量

    125786
  • SiP
    SiP
    +關注

    關注

    5

    文章

    481

    瀏覽量

    104959
  • 系統級封裝
    +關注

    關注

    0

    文章

    27

    瀏覽量

    9023
收藏 人收藏

    評論

    相關推薦

    封裝技術會成為摩爾定律的未來嗎?

    ,性能也隨之增強。這不僅是一條觀察法則,更像是一道命令,催促著整個行業向著更小、更快、更便宜的方向發展。01但這些年來,摩爾定律好像遇到了壁壘。我們的芯片已經小得難
    的頭像 發表于 04-19 13:55 ?107次閱讀
    封裝技術會成為<b class='flag-5'>摩爾定律</b>的未來嗎?

    功能密度定律是否能替代摩爾定律?摩爾定律和功能密度定律比較

    眾所周知,隨著IC工藝的特征尺寸向5nm、3nm邁進,摩爾定律已經要走到盡頭了,那么,有什么定律能接替摩爾定律呢?
    的頭像 發表于 02-21 09:46 ?259次閱讀
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩爾定律</b>?<b class='flag-5'>摩爾定律</b>和功能密度<b class='flag-5'>定律</b>比較

    中國團隊公開“Big Chip”架構能終結摩爾定律?

    摩爾定律的終結——真正的摩爾定律,即晶體管隨著工藝的每次縮小而變得更便宜、更快——正在讓芯片制造商瘋狂。
    的頭像 發表于 01-09 10:16 ?415次閱讀
    中國團隊公開“Big Chip”架構能終結<b class='flag-5'>摩爾定律</b>?

    英特爾CEO基辛格:摩爾定律仍具生命力,且仍在推動創新

    摩爾定律概念最早由英特爾聯合創始人戈登·摩爾在1970年提出,明確指出芯片晶體管數量每兩年翻一番。得益于新節點密度提升及大規模生產芯片的能力。
    的頭像 發表于 12-25 14:54 ?310次閱讀

    摩爾定律時代,Chiplet落地進展和重點企業布局

    如何超越摩爾定律,時代的定義也從摩爾定律時代過渡到了后摩爾定律時代。 后摩爾定律時代,先進封裝和Chiplet技術被寄予厚望。近日,由博聞創
    的頭像 發表于 12-21 00:30 ?1079次閱讀

    應對傳統摩爾定律微縮挑戰需要芯片布線和集成的新方法

    應對傳統摩爾定律微縮挑戰需要芯片布線和集成的新方法
    的頭像 發表于 12-05 15:32 ?354次閱讀
    應對傳統<b class='flag-5'>摩爾定律</b>微縮挑戰需要芯片布線和集成的新方法

    摩爾定律不會死去!這項技術將成為摩爾定律的拐點

    因此,可以看出,為了延續摩爾定律,專家絞盡腦汁想盡各種辦法,包括改變半導體材料、改變整體結構、引入新的工藝。但不可否認的是,摩爾定律在近幾年逐漸放緩。10nm、7nm、5nm……芯片制程節點越來越先進,芯片物理瓶頸也越來越難克服。
    的頭像 發表于 11-03 16:09 ?340次閱讀
    <b class='flag-5'>摩爾定律</b>不會死去!這項技術將成為<b class='flag-5'>摩爾定律</b>的拐點

    超越摩爾定律,下一代芯片如何創新?

    摩爾定律是指集成電路上可容納的晶體管數目,約每隔18-24個月便會增加一倍,而成本卻減半。這個定律描述了信息產業的發展速度和方向,但是隨著芯片的制造工藝接近物理極限,摩爾定律也面臨著瓶
    的頭像 發表于 11-03 08:28 ?522次閱讀
    <b class='flag-5'>超越</b><b class='flag-5'>摩爾定律</b>,下一代芯片如何創新?

    摩爾定律的終結真的要來了嗎

    仍然正確的預測,也就是大家所熟知的“摩爾定律”,但同時也提醒人們,這一定律的延續正日益困難,且成本不斷攀升。
    的頭像 發表于 10-19 10:49 ?375次閱讀
    <b class='flag-5'>摩爾定律</b>的終結真的要來了嗎

    半導體行業產生深遠影響的定律摩爾定律!

    有人猜測芯片密度可能會超過摩爾定律的預測。佐治亞理工學院的微系統封裝研究指出,2004年每平方厘米約有50個組件,到2020年,組件密度將攀升至每平方厘米約100萬個組件。
    的頭像 發表于 10-08 15:54 ?758次閱讀

    摩爾定律為什么會消亡?摩爾定律是如何消亡的?

    雖然摩爾定律的消亡是一個日益嚴重的問題,但每年都會有關鍵參與者的創新。
    的頭像 發表于 08-14 11:03 ?1470次閱讀
    <b class='flag-5'>摩爾定律</b>為什么會消亡?<b class='flag-5'>摩爾定律</b>是如何消亡的?

    什么是摩爾定律?

    摩爾定律是近半個世紀以來,指導半導體行業發展的基石。它不僅是技術進步的預言,更是科技領域中持續創新的見證。要完全理解摩爾定律的影響和意義,首先必須了解它的起源、內容及其對整個信息技術產業的深遠影響。
    的頭像 發表于 08-05 09:36 ?3723次閱讀
    什么是<b class='flag-5'>摩爾定律</b>?

    【芯聞時譯】擴展摩爾定律

    來源:半導體芯科技編譯 CEA-Leti和英特爾宣布了一項聯合研究項目,旨在開發二維過渡金屬硫化合物(2D TMD)在300mm晶圓上的層轉移技術,目標是將摩爾定律擴展到2030年以后。 2D
    的頭像 發表于 07-18 17:25 ?303次閱讀

    超越摩爾定律:封測行業在集成電路發展中的關鍵角色

    在過去的幾十年中,集成電路(IC)的發展進步近乎神奇,推動著科技領域的諸多創新。其中,摩爾定律在這一發展中起到了重要的推動作用,尤其是在半導體行業。
    的頭像 發表于 07-10 10:26 ?482次閱讀
    <b class='flag-5'>超越</b><b class='flag-5'>摩爾定律</b>:封測行業在集成電路<b class='flag-5'>發展</b>中的關鍵角色

    摩爾定律時代新賽道—硅光子芯片技術

    縱觀芯片發展的歷史,總是離不開一個人們耳熟能詳的概念 ——“摩爾定律”。
    的頭像 發表于 06-15 10:23 ?881次閱讀
    后<b class='flag-5'>摩爾定律</b>時代新賽道—硅光子芯片技術
    亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
    <acronym id="s8ci2"><small id="s8ci2"></small></acronym>
    <rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
    <acronym id="s8ci2"></acronym>
    <acronym id="s8ci2"><center id="s8ci2"></center></acronym>