<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>
 ;
文章:新聞EDA技術電源技術無線通信測量儀表嵌入式類電子技術制造技術半導體網絡協議展會實驗家電維修 3G  
  下載:EDA教程電源技術電子書籍電子元件無線通信通信網絡電路圖紙嵌入式類單片機傳感/控制電子教材模擬數字
.... 音視頻類
消費電子機械電子行業軟件C/C++FPGA/ASIC規則標準家電維修DSPIC資料ARM軟件電路圖電子技術論壇
 
位置:電子發燒友 > 電子技術應用 > 行業新聞 > 可編程邏輯 >PLC在恒壓供水系統中的應用設計 退出登錄 用戶管理

PLC在恒壓供水系統中的應用設計

作者:佚名  來源:單片機開發平臺網  發布時間:2010-1-14 11:49:31  [收 藏] [評 論]

PLC在恒壓供水系統中的應用設計

 該系統采用PLC作為控制中心,完成PID閉環運算、多泵上下行切換、顯示、故障診斷等功能,由變頻器調速方式自動調節水泵電機轉速,達到恒壓供水的目的。

  一、前言

  隨著控制技術的發展與完善,變頻器及PLC在各個行業的應用愈來愈廣,PLC與變頻器的可靠性與靈活性得到了用戶的認可。同時傳統的水塔供水方式暴露了很多缺點:水的二次污染,用水高低峰的不平衡,管道閥門易損壞,維修保養費用過高等等。在此條件下各種恒壓供水方式應運而生,其中由變頻器、PLC控制的方式尤為普遍,這種方式的特點:系統穩定,功能強大,變頻器用于供水更加節能,所以廣泛應用在多層住宅小區生活消防供水系統中,現在好多場合也有應用,比如中央空調系統、供水加壓站、集中供熱等,這種方式經受了時間的考驗,已有很多的應用實例。本文介紹的系統在寶雞某電廠家屬區已從98年運行至今,系統穩定,性能可靠,得到了用戶的肯定和好評。

  二、系統組成:

  1、原理框圖:參見圖一所示。

恒壓供水原理框圖

圖一、恒壓供水原理框圖

  2、系統概述:

  該系統由四臺大泵(22KW)與一臺小泵(5.5KW)組成;PLC部分由西門子可編程控制器S7-200系列的CPU226,文本顯示器TD200組成;變頻器采用三菱FR-A540系列,功率22KW。

  用戶所需的生活用水壓力、消防用水壓力、運行方式等參數在TD200文本顯示器上設定,壓力傳感器把用戶管網壓力轉換為0-10V標準信號送進PLC模擬量模塊EM235,PLC通過采樣程序及PID閉環程序與用戶設定壓力構成閉環,運算后轉換為PLC模擬量輸出信號送給變頻器,調節水泵電機轉速,達到恒壓供水的目的。

  該系統有各個泵的運行時間累計功能,通過PLC的數據區保持可以斷電記憶。每次起動時先起動1#小泵,當用水量超過一臺泵的供水能力時,PLC通過程序實現泵的延時上行切換,切換原則為當前未運行的大泵累計運行時間最少的先投入;當壓力超過時,PLC通過程序實現泵的延時下行切換,切換原則為當前正在運行的大泵運行時間最多的先撤出。直到滿足設定壓力為止。追求的最終目標為壓力恒定。

  當供水負載變化時,變頻器的輸出電壓與頻率變化自動調節泵的電機轉速,實現恒壓供水。

  系統還可通過PLC的實時時鐘自動定時供水,用戶在TD200上設定每天最多6段(段數也可設定)定時供水,比如早上6:00到8:30,中午11:20到1:30等。

  系統可動態顯示各種參數,如設定壓力,運行壓力,水位高度,運行方式,實時時間,日歷,各個泵的運行時間累計(精確到秒),運行狀態,故障信息等等。為了不使系統中TD200畫面顯得死板,在PLC程序中控制TD200中的畫面定時切換,動態顯示;

  系統還有故障自診斷功能,各泵發生過載、缺相、短路、傳感器斷線、傳感器短路、水位下限、水壓超高、水壓超低、變頻器故障等,都會有聲光報警,TD200上同時顯示故障類型,通知設備維修人員處理,并可記憶故障發生時間及班次,以便追查原因及相關責任。

  3、工作原理:

  3.1  自動手動方式

 ?。?)手動運行時,可按下按鈕起動停止水泵在工頻狀態下運行,完全脫離開PLC及變頻器的控制,該功能主要用在檢修及自動系統出現故障時的應急供水方式中。

 ?。?)自動運行時,全部泵的運行依程序自動工作。

  上行過程:當在自動運行方式時,按下TD200上的起動軟健,系統先起動1#小泵,PLC程序控制模擬量模塊EM235給定變頻器一固定頻率輸出,此時若用 PID運算輸出直接控制變頻器則(設定壓力大,運行壓力為零,所以運算輸出最大)變頻器依設定的上升時間運行,升速太快,系統沖擊很大。等泵運行一會兒,管網壓力積累后,再用PID運算輸出控制變頻器。具體時間和頻率與管網系統有關,在現場調試時這兩個參數在TD200上設定調整。管網越大,時間越長。

  當 1#小泵到達50HZ后,系統壓力仍偏低,則延時一段時間后,系統靠PLC程序把1#泵切換到工頻運行,同時由PLC輸出一個開關量給變頻器的MRS端子,變頻器瞬間禁止輸出,此時PLC把運行時間最少的泵變頻接觸器接通后,撤掉禁止輸出,相應的泵變頻起動運行;延時切斷1#小泵,系統中相應的一臺大泵變頻運行,壓力自動調節,若系統壓力平衡,則頻率穩定在一個相對的范圍,若頻率到達50HZ后壓力仍然偏低,則再投入一臺大泵,比較剩下的泵的累計運行時間,時間少的先行投入,以此類推。注意,上行中,只要有一臺大泵運行,則1#小泵要斷開,大泵與小泵同時運行時,小泵的效率很低。

  下行過程:當系統壓力偏高,變頻器運行在18HZ左右(18HZ以下泵的效率很低,經驗值)時,PLC程序判斷運行在工頻狀態的泵累計運行時間(若只有一臺泵不作判斷),運行時間最多的泵延時先行撤出,在撤出的瞬間,PLC控制變頻器運行頻率在50HZ,要不系統沖擊過大,容易有水垂現象,延時一會兒后,再把 PID運算輸出投入即可;以此類推。注意:下行過程中,到最后一臺大泵運行時,頻率在18HZ左右,系統壓力仍然偏高時,則把1#小泵切換到變頻運行。這種情況在夜間可能發生,當供水管網很大時,也許沒有這個可能性。

  三、注意事項:

  1、該系統中有泵的工頻變頻上行切換,為了系統的快速響應,切換時間最好越短越好,切換時時間差很小,所以各個泵的變頻接觸器與工頻接觸器最好用可逆接觸器,電氣線路與PLC程序中也要有互鎖功能。以免發生意外短路事故。對系統或變頻器造成危害。

  2、變頻器上行下行切換時間設定,如果設定值過大,則系統不能迅速對管網的用水量做出反應;如果設定值過小,則可能引起系統頻繁的投入泵,撤出泵的動作;為此,PLC程序中增加判斷設定壓力與運行壓力在臨界切換狀態時,只要不超過允許的誤差范圍內,不做泵的切換。

  3、變頻器在上行切換時,必須要有瞬間禁止輸出功能,變頻器沒有此功能可用自由停車功能;所以選擇變頻器時要注意這點。

上一篇文章:基于FPGA的磁浮軸承控制系統研究 下一篇文章:已經沒有了
相關技術應用閱讀 相關技術資料下載
∷相關文章評論∷   ?。ㄔu論內容只代表網友觀點,與本站立場無關?。?[更多評論...]
 
 

 

 
關于本站- 意見反饋 - 網站導航 - 幫助 - 隱私政策 - 聯系我們 - 使用條款 - 安全承諾 - 友情連接 - 歡迎投稿
站長QQ:39550527 Powered by: 颶風網絡(電路圖
Copyright 2006-2008 Elecfans.Com.電子發燒友: 粵ICP備07065979號All Rights Reserved
亚洲欧美日韩精品久久_久久精品AⅤ无码中文_日本中文字幕有码在线播放_亚洲视频高清不卡在线观看
<acronym id="s8ci2"><small id="s8ci2"></small></acronym>
<rt id="s8ci2"></rt><rt id="s8ci2"><optgroup id="s8ci2"></optgroup></rt>
<acronym id="s8ci2"></acronym>
<acronym id="s8ci2"><center id="s8ci2"></center></acronym>